Ayuda
Ir al contenido

Dialnet


Resumen de 3d culture of multiple myeloma cell line using microgel environments

Juan Carlos Marin Paya

  • Multiple myeloma is a haematological neoplasm characterized by an uncontrolled expansion of monoclonal plasma cells (mPCs) in bone marrow that produce, in most cases, a monoclonal component secreted in serum and/or urine. At present, it is still considered an incurable disease with the constant appearance of relapses in patients. One of the causes that condition this situation lies in the generation of drug resistance by the mPCs. This mechanism of drug resistance (DR) has been seen to depend not only on intracellular factors, but the very interaction of mPCs with the medullary microenvironment plays a fundamental role in their survival, growth and development of DR. Among the components of the tumor microenvironment, the adhesion of the mPCs to components of the extracellular matrix (ECM) stands out, which has been related to the generation of DR. For this reason, the development of this doctoral thesis consisted in the elaboration and validation of a 3D culture platform based on the synthesis of a microgel. This system will be made up of micropsheres functionalized with the components of the ECM such as fibronectin (FN), collagen type I (COL), heparin (Hep), heparan sulphate (HS) and hyaluronic acid (HA), generating a 3D biomimetic environment with the ability to analyse the cellular response triggered by the interaction of mPCs with the ECM components, as well as the DR generated by the adhesion of the mPCs to these biomolecules.

    The first study consisted in the realization and development of several protocols for the synthesis of different microgels. A first system was produced by the radical block polymerization of polyethylene acrylate (EA) and polymethacrylate (EMA) co-polymers or by EA, EMA and acrylic acid (AAc). By means of an oil-in-water emulsion technique, it was possible to produce, with these copolymers, microspheres of a size close to that of the mPCs. A second system was based on alginate microspheres. These microspheres were obtained in a microfluidic device producing the external gelification of the micro-drops with the incorporation of calcium ions, obtaining microspheres with an average size of 177 µm. Due to the great variety of microspheres synthesized with different chemical groups on their surfaces, it was possible to establish functionalization protocols similar to those established in the literature, taking into account the stability of the biomolecule along with the time of cell culture. This approach allowed for functionalization with a great variety of biomolecules, having in this way functionalized microgels with FN, COL, Hep, HS and HA.

    Once the microgels were developed, a second study was carried out to evaluate the cell response in a 3D microgel-based environment, assessing the interaction with the components of the ECM. Among the results observed, it was possible to determine how the size of the microspheres affects cell growth even in the absence of any functionalization. With the microgels constituted by microspheres close to the size of the mPCs, a greater cellular growth was obtained than with the microgels formed by larger particles, and in both the growth was higher than in suspended culture. It is hypothesized that the presence of microspheres greatly favours a greater cell-cell contact, which is increased the larger the specific surface area of the microgel. Among the components of the ECM studied, while the COL does not generate any cellular response different from the control (non-functionalized microgel), HA favours cell proliferation. The adhesion of mPCs to FN conditions the blocking of cells in the G0-G1 phase of the cell cycle. This adhesion is mediated by the integrin ¿4ß1.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus