Ayuda
Ir al contenido

Dialnet


Resumen de Flexural fatigue of pre-cracked fibre reinforced concrete: experimental study and numerical modelling

Debora Martinello Carlesso

  • Fibre reinforced concrete (FRC) is recognized as suitable material for structural applications. The number of national codes that have approved it is an evidence. Structures where FRC is generally used can be subjected to fatigue loads and are expected to resist millions of cycles during their service life. Cyclic loads affect significantly the characteristics of materials and can cause fatigue failures. The most demanded cross-sections being cracked under tensile stresses due to direct loads or imposed deformations. Commonly, publications report fatigue behaviour of concrete under compression and are valid for uncracked sections. Imprecision in fatigue prescriptions are reflected through formulation of models that contemplate a probabilistic approach, or an introduction of high safety coefficients within construction codes. The aim of the present doctoral thesis is to perform a structural design oriented analysis on the behaviour of pre-cracked FRC subjected to flexural fatigue loads. FRC with steel and polypropylene fibre with different volume content were investigated by means of three-point bending tests, considering an initial crack width accepted in the service limit state. The mechanical behaviour of FRC were analysed in terms of applied load level, crack opening displacement (CMOD) and fatigue life. The residual flexural tensile strength was assessed after these tests to estimate the impact of the cycles in the remaining resistant capacity of the specimens. Results suggest that the mechanism of crack propagation is independent of the fibre type and content and the monotonic load-crack opening displacement curve might be used as deformation failure criterion for FRC under flexural fatigue loading. The conducted probabilistic approach allows predicting the fatigue strength of concrete reinforced with steel fibres. The findings postulate the proposal of a model to predict the evolution of the crack-opening and the remaining resistant capacity. An optimisation procedure is proposed to derive the model parameters using a limited number of initial load cycles. This doctoral thesis provides knowledge and data that may aid further research and contribute to the future development of design recommendations.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus