This doctoral thesis entitled "Neurotransmitters recognition based on gold and mesoporous silica nanoparticles for sensing and controlled release applications" it is a thesis carried out by compendium of articles, which is focused on the design, preparation, characterization and evaluation of nanodevices for the colorimetric sensing of neurotransmitters and controlled delivery systems responsive to neurotransmitters, based on gold nanoparticles and mesoporous silica nanoparticles equipped with organic ligands, enzymatic effectors, molecular gates and chromo-fluorogenic species or drugs.
The first chapter introduces an overview about what neurotransmitters are, their main characteristics and the important role they play in the functioning of our body. In addition, a general description of the properties and potential applications of gold nanoparticles functionalized with organic ligands as detection systems and mesoporous silica nanoparticles functionalized with molecular gates as controlled delivery systems is presented.
In the second chapter, the general objectives that are addressed in the following experimental chapters are presented.
In the third chapter, three colorimetric detection systems of neurotransmitters based on the aggregation of gold nanoparticles doubly functionalized with organic ligands are presented. The first system is a sensor capable of selectively detecting the neurotransmitter serotonin, using gold nanoparticles functionalized with dithio-bis(succinimidyl propionate) and N acetyl-L-cysteine. The second system consists of a sensor for the selective detection of the neurotransmitter norepinephrine designed from gold nanoparticles functionalized with 4- (liponyloxy)benzaldehyde and 4-mercaptophenylboronic acid. The third system is composed of gold nanoparticles functionalized with 4-(liponyloxy)benzaldehyde and N-Acetyl-L-Cysteine, for the detection of normetanephrine, an important biomarker of the pheochromocytoma tumor. All these systems are evaluated in competitive media such as blood serum or urine.
In the fourth chapter, two enzymatic controlled delivery systems based on the opening of molecular gates are developed. The first controlled delivery system responds to the presence of the neurotransmitter acetylcholine. Specifically, it consists of mesoporous silica nanoparticles functionalized on their surface with phenylboronic acid groups and capped with the enzyme acetylcholinesterase, via the formation of cyclic phenylboronic acid esters between the oligosaccharide chains of the enzyme and the phenylboronic groups on the nanoparticles surface. In this case, the enzymatic reaction produces acetic acid that induces the hydrolysis of the boronic esters, uncapping the pores and releasing the entrapped payload. In addition, the ability of the nanodevice to release the cytotoxic doxorubicin in cancer cells in the presence of acetylthiocholine is evaluated.
The second delivery system consists of a nanodevice responsive to the neurotransmitter L-glutamate. It is based on Janus gold-silica mesoporous nanoparticles functionalized with the enzyme L-glutamate oxidase in the gold part and with a self-immolative arylboronate molecular gate on the surface of the silica. Controlled delivery is based on the recognition of L-glutamate by the enzyme L-glutamate oxidase and the subsequent formation of hydrogen peroxide, which results in the cleavage of the self-immolative gate and the uncapping of the pores. Finally, it is shown that the designed system is capable of releasing a cytotoxic drug in brain cancer cells after detecting the presence of L-glutamate.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados