Ayuda
Ir al contenido

Dialnet


Resumen de Evolution of della proteins as transcriptional hubs in plants

Asier Briones Moreno

  • DELLA proteins are central elements of the gibberellin (GA) signaling pathway, where they act as repressors of GA responses. In angiosperms, DELLAs have been shown to interact with hundreds of transcription factors and other transcriptional regulators, thereby modulating gene expression. Hence, the widespread involvement of GAs along the plant life cycle is a direct consequence of the promiscuity of DELLA proteins and their role as key transcriptional regulators. Although DELLAs can be found in all land plants, they are only regulated by GAs in tracheophytes, where most of the previous studies have been focused. The work presented here aims to decipher at which point in evolution did DELLAs acquired the molecular features that render them as 'hubs', and what biological advantages could be related with DELLA evolution. In the first chapter, we describe comparative analyses of DELLA-associated gene co-expression networks in vascular and non-vascular species and propose that DELLAs have a critical role in the conformation of transcriptional landscapes. Upon their emergence in the ancestor of land plants, they connected multiple transcriptional programs that would be independent without them, improved the efficiency of information transmission and increased the level of complexity in transcriptional regulation. We also observed that this effect was enhanced after their integration in GA signaling. In the second chapter, we provide stronger experimental evidence that extends this conclusion. Using a combination of targeted yeast two-hybrid screenings with DELLAs from different positions in the plant lineage, and heterologous complementation in Arabidopsis and Marchantia plants, we show that promiscuity is a conserved feature in all the examined DELLA proteins, which suggests that this property might have been encoded in the ancestral DELLA, and then maintained along evolution, with episodes of co-evolution between DELLAs and their partners. Finally, comparison of DELLA transcriptional targets in different species shows a striking conservation of a small set of functions regulated by DELLAs in vascular and non-vascular plants -including the response to stress factors-, while comparative promoter analysis indicates that species-specific DELLA targets emerge through at least two mechanisms: establishment of novel DELLA interactions, and the access by conserved partners to new target promoters.

    In summary, we propose that DELLAs are intrinsically promiscuous proteins, with hub properties in virtually all land plants, and the conservation of their transcriptional targets largely depends on the evolution of their interactors. The conservation of the hub properties of DELLA proteins makes them ideal biotechnological targets, as most of the knowledge generated in one species could be readily adapted to other relatively distant species.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus