Ayuda
Ir al contenido

Dialnet


Impact evaluation of future climate and land use scenarios on water and sediment regime using distributed hydrological modelling in a tropical rainforest catchment in west java (indonesia)

  • Autores: Shantosa Yudha Siswanto
  • Directores de la Tesis: Félix Ramón Francés García (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2020
  • Idioma: español
  • Tribunal Calificador de la Tesis: Joaquín Andréu Álvarez (presid.), Sandra García Galiano (secret.), Budi Mulyanto (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería del Agua y Medioambiental por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • Climate change has occurred in Indonesia, for example, increasing the surface air temperature, including in the Upper Citarum watershed. This phenomenon leads to a lack of water in the dry season, which lowers agriculture production and remains a great obstacle for agricultural activity. Meanwhile, human activity has produced severe LULC changes within the Upper Citarum watershed. This occurs due to the demands of the ever-increasing population growth in the region. As a result, rice field and forested areas have been sacrificed to compensate the urban increment. The general objective of this dissertation is to understand and analyze the impact of climate and LULC changes on the hydrological process and their relationship with historical and future changes by using spatially distributed modeling on the Upper Citarum tropical catchment. The distributed model TETIS has been implemented to obtain the results of past and future scenarios on the water and sediment cycles. Annual historical bathymetries in the reservoir were used to calibrate and validate the sediment sub-model involving Miller's density evolution and trap efficiency of Brune's equation. Climate change has been considered under RCP 45 and RCP 85 trajectories. Meanwhile, to overcome the LULC problem, historical and future LULCs have been studied. LCM model was used to forecast the LULC in 2029. The forecasted results of LCM model show, on one hand, a continuation in the expansion of urban areas at the expense of the contiguous rice fields. The results determined that deforestation and urbanization were the most influential factors for the alteration of the hydrological and sedimentological processes in the Upper Citarum Catchment. Thus, it decreases evapotranspiration, increases water yield by increasing all its components; overland flow, interflow and baseflow. The changes in LULC are currently producing and will produce in the future, a relatively small increment of erosion rates, increasing the area exceeds Tsl erosion. Sediment yield will increase in 2029 as the result of erosion increment. Other LULC scenarios such as conservation, government plan and natural vegetation scenarios are expected to have an increment in total evapotranspiration, the water yield is expected to decrease. Flood regime, erosion and sedimentation are reduced dramatically. Hence, it leads to a massive increment of reservoir and hydropower lifetime signed by a very long period of the lifetime. Climate change alters the magnitude of water balance and can be identified from the shift of infiltration, overland flow, interflow, baseflow and water yield. Those increments finally change the flood regime, catchment erosion. RCP 85 trajectory gives a bigger impact compared to RCP 45 trajectory on hydrological and sediment cycle. . LULC change results a bigger impact on water balance, flood regime, erosion and sedimientation. The combination of climate and LULC change give a bigger impact on the flows of water balance, erosion, flood, sedimentation and will be catastrophic for the hydropower operation of the Saguling Dam.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno