Ayuda
Ir al contenido

Dialnet


Resumen de Estudio microtomográfico de la anatomía funcional de dos especies de insectos plaga, el psílido asiático de los cítricos, diaphorina citri (hemiptera liviidae) y la broca del café, hypothenemus hampei (coleoptera, curculionidae)

Ignacio Alba Alejandre

  • español

    RESUMEN Tradicionalmente, el estudio de la anatomía interna en los insectos, se ha basado en técnicas de disección con las limitaciones propias de la misma. La microtomografía computarizada (micro-CT), es una técnica relativamente nueva que se basa en la obtención de imágenes de rayos X que tras ser procesadas permite reconstruir la anatomía externa e interna y del espécimen. Así como separar con diferente color las estructuras. Pudiendo observarlas en su posición anatómica desde cualquier perspectiva y sin necesidad de realizar disecciones y por tanto sin las deformaciones y destrucción que estas implican. Todo ello ha abierto un abanico de posibilidades inimaginables antes, e imposibles, con los métodos clásicos de disección y/o con las técnicas de microscopía.

    El objetivo principal de esta tesis doctoral ha sido realizar un estudio microtomográfico detallado (con imágenes 3D de alta resolución y vídeos) de la anatomía externa e interna de dos especies de insectos plaga: el psílido asiático de los cítricos (Diaphorina citri Kuwayama, 1908) y la broca del café (Hypothenemus hampei Ferrari, 1867), de gran importancia a nivel mundial por los enormes daños y pérdidas económicas que provocan. Adicionalmente, durante la realización del estudio de la actividad de H. hampei en el interior de la cereza del café, encontramos especímenes del gorgojo del grano de café (Araecerus fasciculatus De Geer en 1775) emergiendo de las cerezas del café, este descubrimiento motivó un estudio del mismo y su actividad dentro de la cereza del café, que fue objeto de una publicación adicional al respecto y que se incluye como material adicional.

    Los resultados aquí obtenidos, junto con los del trabajo previo (en que realizamos un estudio microtomográfico de la abeja de la miel y comparamos los resultados con la publicación clásica de Snodgrass sobre la anatomía de la especie), confirman que las técnicas de micro-CT constituyen una excelente alternativa a los métodos tradicionales basados en la disección. Al ser una técnica no destructiva que permite observar las estructuras (externas e internas) en su posición anatómica real, desde cualquier perspectiva, tantas veces como se requiera, sin riesgo de deformarlas o romperlas. Y sin los inconvenientes de las deformaciones producidas durante las manipulaciones que requiere la disección. Asimismo, durante el estudio microtomográfico de ambas especies se ha podido completar detalles de estructuras ya descritas por otros autores y al mismo tiempo se han descubierto otras que nunca habían sido descritas, y que de no ser por la micro-CT difícilmente podrían haberse puesto de manifiesto. Los resultados obtenidos, en su mayor parte ya publicados, de una forma resumida han sido los siguientes: El psílido asiático de los cítricos (Diaphorina citri): Anatomía externa (la cabeza, con descripción detallada de las estructuras, incluidos el aparato bucal, ojos y antenas; el tórax, morfología de los diferentes segmentos, patas, escleritos, distribución de los espiráculos, y las alas; el abdomen -segmentos, distribución de los espiráculos, y terminalia de ambos sexos-). Anatomía interna (digestivo, faringe, esófago, cámara filtradora, intestino medio, e intestino posterior y ano; sistema excretor, las estructuras tubulares –apéndices- del intestino medio, consideradas clásicamente como túbulos de Malpigio; estructuras internas de la cámara cibarial (bomba precibarial -salivar-, bomba cibarial, conos maxilares y mandibulares y los músculos asociados; disposición de los estiletes, glándulas -salivares, coxales y antenales-, las glándulas coxales y antenales se describen y citan por vez primera en Psylloidea, discutiéndose su posible función como productoras de feromonas sexuales; sistema traqueal -espiráculos, y disposición de los tubos traqueales abdominales-; sistema circulatorio -vaso dorsal, aorta y músculos aliformes-; sistema nervioso -cerebro, cadena nerviosa ganglionar ventral y nervios-, se describen por vez primera en Psylloidea la existencia de diferencias sexuales en la conformación del cerebro y ganglios de la cadena nerviosa ventral; sistema reproductor masculino -testículos, vesículas seminales, glándulas accesorias, bomba espermática, conductos de conexión y edeago-; sistema reproductor femenino -ovarios, glándulas accesorias, espermateca, glándula coleterial/cementante, conductos de conexión y el ovipositor-, la anatomía funcional de la espermateca se describe y analiza por primera vez en Psylloidea; bacterioma -situación, organización externa e interna-; siendo la primera reconstrucción tridimensional del mismo; diferentes detalles de la musculatura). Aspectos anatómico-morfológicos y funcionales derivados de la alimentación picadora-chupadora (estructuras implicadas, punto de perforación, los estiletes dentro de los vasos de la planta y las vainas salivares.) La broca del café (Hypothenemus hampei): Estudio de la actividad vital de H. hampei en el interior de la baya del café (se observó, un patrón comportamental en el que la hembra se coloca con el abdomen dirigido al exterior, taponando la entrada de los túneles. Asimismo, la construcción de túneles presenta un trazado en zig-zag que dificulta la penetración de posibles parasitoides. Por otro lado el aprovechamiento de los recursos alimenticios de la cereza del café se maximiza gracias a la secuencia constructora de los túneles y cámaras de oviposición. Que de forma secuencial comienza en la periferia semilla y se mueve hacia el interior). Anatomía externa (la cabeza -estructuras y diferencias sexuales en número y disposición de omatidios-; el tórax -diferentes segmentos, espiráculos respiratorios y primera observación sobre las diferencias sexuales en la morfología del pronoto-; el abdomen -espiráculos respiratorios, y diferencias sexuales en el número de segmentos-.Anatomía interna (aparato digestivo -esófago, buche, proventrículo, intestino medio, intestino posterior, ciegos gástricos, ampolla rectal y ano, se describen por primera vez diferencias sexuales en la conformación y número de circunvoluciones del intestino medio; sistema excretor -número y disposición de los túbulos de Malpigio-; sistema reproductor masculino -testículos, glándulas accesorias, vesículas seminales, bomba espermática, conducto eyaculador y primera descripción del edeago-; sistema reproductor femenino -ovarios, oviductos laterales, glándula accesoria, espermateca, glándula espermática, oviducto común y gonoporo-; sistema respiratorio -con un detallado estudio de los espiráculos respiratorios; se describen por vez primera, en detalle, los sistemas de filtración que presentan, y se reconstruye por vez primera todo el sistema de tubos traqueales, nombrándose las diferentes ramas, algunas nunca antes descritas. Habiéndose calculado la longitud total de tubos y estudiado la distribución por tamaños de la luz interna- ; aparato circulatorio -vaso dorsal y aorta-; sistema nervioso -cerebro, ganglios de la cadena nerviosa ventral y nervios, se describen por vez primera diferencias sexuales en el tamaño y conformación del cerebro-; la musculatura -señalando por vez primera una reducción de los músculos implicados en el vuelo en los machos-.

    El gorgojo del grano de café (Araecerus fasciculatus): La especie fue descrita en 1775 como Curculio fasciculatus, y es la primera vez en los dos siglos y medio transcurridos en que gracias a las modernas técnicas de microtomografía se ha podido "congelar" la actividad del insecto en el interior de una baya de café y estudiarla en detalle. Este estudio ha revelado aspectos interesantes de la biología del gorgojo del café dentro de la baya del café. Habiéndose reconstruido larvas de 5º estadio y hembras dentro de la cereza del café. Además, durante el estudio se descubrió un ejemplar macho de una especie no descrita de coleóptero de la familia Ptinidae (Ptinus s.tr. sp.)

  • English

    ABSTRACT Traditionally, the study of the internal anatomy of insects has been based on dissection techniques with their own limitations. The computerized microtomography (micro-CT), is a relatively new technique that is based on obtaining X-ray images that after being processed allows to reconstruct the external and internal anatomy and the specimen, as well as to separate with different color the structures. Being able to observe them in their anatomical position from any perspective and without the need for dissections and therefore without the deformations and destruction that these imply. All this has opened up a range of possibilities previously unimaginable, and impossible, with the classic methods of dissection and/or microscopy techniques.

    The main objective of this doctoral thesis has been to carry out a detailed microtomographic study (with high resolution 3D images and videos,) of the external and internal anatomy of two species of insect pests: the Asian citrus psyllid (Diaphorina citri Kuwayama, 1908) and the coffee berry borer (Hypothenemus hampei Ferrari, 1867), of great importance worldwide due to the enormous damage and economic losses they cause. Additionally, during the study of H. hampei's activity within the coffee cherry, we found specimens of the coffee bean weevil (Araecerus fasciculatus De Geer in 1775) emerging from coffee cherries. This discovery motivated a study of the bean weevil and its activity within the coffee berry, which was the object of an additional publication on the subject and which is included as additional material.

    The results obtained here, together with those of our previous work (in which we carried out a microtomographic study of the honey bee and compared the results with the classic publication of Snodgrass on the anatomy of the species), confirm that the micro-CT techniques constitute an excellent alternative to the traditional methods based on dissection. As it is a non-destructive technique that allows to observe the structures (external and internal) in their real anatomical position, from any perspective, as many times as required, without the risk of deforming or breaking them. And without the inconvenience of the deformations produced during the manipulations required for dissection. Likewise, during the microtomographic study of both species it has been possible to corroborate structures already described by other authors and at the same time others have been discovered, never described before, which if it were not for the micro-CT could hardly have been made evident. The results obtained, for the most part already published, in a summarized form, have been the following:

    The Asian Citrus Psyllid (Diaphorina citri): External anatomy (the head, with detailed description of the structures, including the oral system, eyes and antennae; the thorax, morphology of the different segments, legs, sclerites, distribution of the spiracles, and the wings; the abdomen -segments, distribution of the spiracles, and terminalia of both sexes-). Internal anatomy (digestive, pharynx, esophagus, filter chamber, midgut, and hindgut and anus; excretory system, the tubular structures -appendices- of the midgut, classically considered as Malpigium tubules; internal structures of the cibarial chamber (precibarial -salivary - pump, cibarial pump, maxillary and mandibular cones and associated muscles; stylets bundle, glands -salivary, coxal and antennal-, coxal and antennal glands are described and cited for the first time in Psylloidea, discussing their possible function as producers of sexual pheromones; tracheal system -spiracles, and disposition of the abdominal tracheal tubes-; circulatory system -dorsal vessel, aorta and aliform muscles-; Nervous system -brain, ventral ganglion nerve chain and nerves-, the existence of sexual differences in the conformation of the brain and ventral ganglion nerve chain are described for the first time in Psylloidea; male reproductive system -testicles, seminal vesicles, accessory glands, spermatic pump, connection ducts and edeagus-; female reproductive system -ovaries, accessory glands, spermatheca, colleterial/cement gland, connecting ducts and the ovipositor-, the functional anatomy of the spermatheca is described and analyzed for the first time in Psylloidea; bacteriome -situation, external and internal organization-; being the first three-dimensional reconstruction of it; different details of the musculature). Anatomical-morphological and functional aspects derived from the chopper-sucker feeding (structures involved, perforation point, the stylets inside the plant vessels and the salivary sheaths).

    The coffee berry borer (Hypothenemus hampei): Study of the vital activity of H. hampei inside the coffee berry (a behavioral pattern was observed in which the female is placed with the abdomen directed to the outside, blocking the entrance of the tunnels. Likewise, the construction of tunnels presents a zig-zag pattern that makes the penetration of possible parasites difficult. On the other hand, the use of the food resources of the coffee cherry is maximized thanks to the construction sequence of the tunnels and oviposition chambers. That in a sequential way begins in the seed periphery and moves towards the interior). External anatomy (the head - structures and sexual differences in the number and arrangement of ommatidia; the thorax - different segments, respiratory spiracles and first observation on sexual differences in the morphology of the pronotum; the abdomen - respiratory spiracles, and sexual differences in the number of segments. Internal anatomy (digestive system -esophagus, crop, proventricle, midgut, hindgut, gastric cecum, rectal ampulla and anus-, sexual differences in the conformation and number of circumvolutions of the midgut are described for the first time; excretory system -number and arrangement of Malpigio's tubules-; male reproductive system -testes, accessory glands, seminal vesicles, spermatic pump, ejaculatory duct and first description of the edeagus-; female reproductive system - ovaries, lateral oviducts, accessory gland, spermatheca, spermatic gland, common oviduct and gonopore; respiratory system - with a detailed study of the respiratory spiracles; the filtering systems they present are described for the first time in detail, and the whole system of tracheal tubes is reconstructed for the first time, naming the different branches, some of them never described before. Having calculated the total length of the tubes and studied the distribution of internal light by size, the circulatory system -dorsal and aortic vessels-; the nervous system -brain, ventral nerve chain nodes and nerves, sexual differences in the size and shape of the brain are described for the first time; the musculature -showing for the first time a reduction in the muscles involved in flight in males-.

    The Coffee Bean Weevil (Araecerus fasciculatus): The species was described in 1775 as Curculio fasciculatus, and this is the first time in the two and a half centuries since then that thanks to modern microtomography techniques it has been possible to "freeze" the insect's activity inside a coffee berry and study it in detail. This study has revealed interesting aspects of the biology of the bark beetle inside the coffee berry. Having reconstructed 5th instar larvae and females inside the coffee berry. In addition, during the study a male specimen of an undescribed species of beetle from the family Ptinidae (Ptinus s.tr. sp.) was discovered.

    Bibliografía más relevante utilizada en la tesis Alba-Alejandre, I., Alba-Tercedor, J., & Vega, F. E. (2019). Anatomical study of the coffee berry borer (Hypothenemus hampei) using micro-computed tomography. Scientific Reports, 9(17150), 1–16. https://doi.org/10.1038/s41598-019-53537-z Alba-Alejandre, I., Hunter, W. B., & Alba-Tercedor, J. (2018). Micro-CT study of male genitalia and reproductive system of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908 (Insecta: Hemiptera, Liviidae). PLoS ONE, 13(8), 1–11. https://doi.org/https://doi.org/10.1371/journal.pone.0202234 Editor: Alba-Tercedor, J. (2013). Study of the anatomy of the common housefly Musca domestica Linnaeus, 1758 (Insecta: Diptera, Muscidae) scanned with the Skyscan 1172 high resolution micro-CT. Bruker Micro-CT Users Meeting 2013, 275–289.

    Alba-Tercedor, J., & Alba-Alejandre, I. (2019). Comparing micro-CT results of insects with classical anatomical studies: The European honey bee (Apis mellifera Linnaeus, 1758) as a benchmark (Insecta: Hymenoptera, Apidae). Microscopy and Analysis, 3(1), 12-15 EU. Retrieved from https://microscopy-analysis.com/article/january_19/comparing_classical_anatomical_studies_of_insects Alba-Tercedor, J., Alba-Alejandre, I., & Vega, F. E. (2019). Revealing the respiratory system of the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae: Scolytinae) using micro-computed tomography. Scientific Reports, 9(17753), 1–17. https://doi.org/10.1038/s41598-019-54157-3 Alba-Tercedor, J., & Bartomeus, I. (2016). Micro-CT as a tool straddling scientist research, art and education. Study of Osmia sp., a mason bee (Insecta, Hymenoptera: Megachilidae). In Bruker Micro-CT Users Meeting 2016 (pp. 74–91).

    Alba-Tercedor, J., Hunter, W. B., Cicero, J. M., & Sáinz-Bariáin, M. (2017). Use of micro-CT to elucidate details of the anatomy and feeding of the Asian Citrus Psyllid Diaphorina citri Kuwayama , 1908 ( Insecta : Hemiptera , Lividae ). In Bruker Micro-CT Users Meeting 2017 (pp. 270–285). Kontich: Bruker microCT-Skyscan.

    Aldrovandi, U. (1602). De Animalibus Insectis Libri. Bologna.

    Ammar, E.-D., Alessandro, R., Shatters Jr, R. G., & Hall, D. G. (2013). Behavioral, Ultrastructural and Chemical Studies on the Honeydew and Waxy Secretions by Nymphs and Adults of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Psyllidae). PLoS ONE, 8(6), e64938. https://doi.org/10.1371/journal.pone.0064938 Ammar, E.-D., & Hall, D. G. (2012). New and Simple Methods for Studying Hemipteran Stylets, Bacteriomes, and Salivary Sheaths in Host Plants. Annals of the Entomological Society of America, 105(5), 731–739. https://doi.org/10.1603/AN12056 Ammar, E.-D., Hall, D. G., & Shatters, R. G. (2017). Ultrastructure of the salivary glands, alimentary canal and bacteria-like organisms in the Asian citrus psyllid, vector of citrus huanglongbing disease bacteria. Journal of Microscopy and Ultrastructure, 5(1), 9–20. https://doi.org/10.1016/j.jmau.2016.01.005 Ammar, E.-D., Hentz, M., Hall, D. G., & Shatters, R. G. (2015). Ultrastructure of Wax-Producing Structures on the Integument of the Metaleuca Psyllid Boreioglycaspis melaleucae (Hemiptera: Psyllidae), with Honeydew Excretion Behavior in Males and Females. PLOS ONE, 10(3), e0121354. https://doi.org/10.1371/journal.pone.0121354 Ammar, E.-D., Richardson, M. L., Abdo, Z., Hall, D. G., & Shatters, R. G. (2014). Differences in Stylet Sheath Occurrence and the Fibrous Ring (Sclerenchyma) between xCitroncirus Plants Relatively Resistant or Susceptible to Adults of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae). PLoS ONE. https://doi.org/10.1371/journal.pone.0110919 Ammar, E., Shatters, R., Lynch, C., & Hall, D. G. (2011). Detection and relative titer of Candidatus Liberibacter asiaticus in the salivary glands and alimentary canal of Diaphorina citri (Hemiptera: Psyllidae) vector of citrus. Annals of the Entomological Society of America, 104(3), 526–533. Retrieved from http://aesa.oxfordjournals.org/content/104/3/526.abstract Archibald, R. D., & Chalmers, I. S. (1983). Stored product Coleoptera in New Zealand. N. Z. Entomol., 7, 371–397.

    Arras, J., Hunter, W., & Bextine, B. (2012). Comparative analysis of antennae sensory arrays in Asian citrus psyllid, Diaphorina citri, and potato psyllid, Bactericera cockerelli (Hemiptera). Southwestern Entomologist. https://doi.org/http://dx.doi.org/10.3958/059.037.0101 Atkins, M. D., & Chapman, J. A. (1957). Studies on Nervous System Anatomy of the Douglas Fir Beetle, Dendroctonzis pseudotsugae Hopk. (Scolytidae)’. The Canadian Entomologist (Vol. 89). https://doi.org/https://doi.org/10.4039/Ent8980-2 Austin, C. (2016). Morphology of Acercaria: investigations of the ovipositor and internal anatomy. University of Illinois at Urbana-Champaign.

    Autuori, M. (1931). Dados biologicos sobre o Araecerus fasciculatus (De Geer) (Col. Anthribiidae). Revista de Entomología, 1, 52–61.

    Backus, E., Hunter, W. B., & Arne, C. N. (1988). Technique for staining Leafhopper (Homoptera: Cicadellidae) salivary sheaths and eggs within unsectioned plant tissue View project. J. Econ. Entomol., 81(6), 1819–1823. https://doi.org/10.1093/jee/81.6.1819 Bajpai, P. (2018). Hydraulics. In Biermann’s Handbook of Pulp and Paper (pp. 455–482). Elsevier. https://doi.org/10.1016/B978-0-12-814238-7.00023-4 Barcellos, M. S., Fernanda, J., Cossolin, S., Dias, G., & Lino-Neto, J. (2017). Sperm morphology of the leafhopper Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psylloidea: Liviidae). Micron, 99, 49–55. https://doi.org/10.1016/j.micron.2017.03.017 Beal, J. A. (1927). The Development of the Proventriculus of Pityogenes Hopkinsi Swaine. Annals of the Entomological Society of America, 20(4), 522–539. https://doi.org/10.1093/aesa/20.4.522 Beani, L., Dessì-Fulgheri, F., Cappa, F., & Toth, A. (2014). The trap of sex in social insects: From the female to the male perspective. Neuroscience and Biobehavioral Reviews, 46, 519–533. https://doi.org/10.1016/j.neubiorev.2014.09.014 Billen, J. (1997). Morphology and ultrastructure of the metatibial gland in the army ant Norylus molestus (Hymenoptera, formicidae). Belg. J. Zool, 127(2), 159–166.

    Billen, J. (2009). Occurrence and structural organization of the exocrine glands in the legs of ants. Arthropods Structure and Development, 38, 2–15. https://doi.org/10.1016/j.asd.2008.08.002 Billen, J., & Ito, F. (2006). The basicoxal gland, a new exocrine structure in poneromorph ants (Hymenoptera, Formicidae). Acta Zoologica (Stockholm), 87, 291–296.

    Bin, F. (1986). Morphology of of the antennal sex-gland in male Trissolcus basalis (Woll.) (Hymenoptera: Scelionidae ), an egg parasitoid of the green stink Bug, Nezara viridula (Hemiptera: Pentatomida). Int. J. Insect Morphol. & Embryol., 15(3), 129–138.

    Bitsch, J. (1979). Morphologie Abdominale des Insectes. Ordre des Homoptères, B.-Psylles. In P.-P. Grassé (Ed.), Traité de Zoologie. Anatomie, Systématique, Biologie. T. VIII, Insectes Thorax, Abdomen. Fasc. II (pp. 420–429). Paris, New York, Barcelone, Milan: Masson et Cie.

    Blackman, M. W. (1922). Mississippi bark beetles. Mississippi Agricultural Experiment Station, Technical Bulletin, 11, 1–130.

    Blowers, J. R., & Moran, V. C. (1967). Notes on the female reproductive system of the South African Citrus Psylla, Trioza erytreae (Del Guercio) (Homoptera : Psyllidae). Journal of the Entomological Society of Southern Africa, 30(1), 75–81 Bonani, J. P., Fereres, A., Garzo, E., Miranda, M. P., Appezzato-Da-Gloria, B., & Lopes, J. R. S. (2010). Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings. Entomologia Experimentalis et Applicata, 134(1), 35–49. https://doi.org/10.1111/j.1570-7458.2009.00937.x Boué, H., & Chanton, R. (1962). 4o L’appareil respiratoire. In Biologie Animale. Zoologie I. Invertebrés (2nd ed., pp. 388–397). Paris: G. Doin & Cie.

    Brittain, W. H. (1922). The morphology and synonymy of Psylla mali Schmidberger. Proceeding Acadian Entomological Society (Fredericton), 8, 23–51.

    Brown, J. K., Cicero, J. M., & Fisher, T. W. (2016). Psyllid-Transmitted Candidatus Liberibacter Species Infecting Citrus and Solanaceous Hosts. In J. K. Brown (Ed.), Vector-Mediated Transmission of Plant Pathogens (pp. 399–422). St. Paul, Minnesota: The American Phytopathological Society. https://doi.org/10.1094/9780890545355.028 Brown, R. G., & Hodkinson, I. D. (1988). Taxonomy and Ecology of the Jumping Plant-lice of Panama: Homoptera, Psylloidea. Lei- den, The Netherlands: E. J. Brill/Scandanavian Science Press Ltd.

    Browne, F. G. (1961). The biology of Malayan Scolytidae and Platypodidae. Malayan Forest Records, 22, 1–255.

    Browne, F. G. (1973). The African species of Poecilips Schaufuss. Revue de Zoologie et de Botanique Africaines, 87, 679–696.

    Bu, S.-H., & Chen, H. (2009). The Alimentary Canal of Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytinae). The Coleopterists Bulletin, 63(4), 485–496. https://doi.org/10.1649/1190.1 Büning, J., & Büning, J. (1994). The ovary of Ectognatha, the Insecta s. str. In The Insect Ovary (pp. 31–324). Springer Netherlands. https://doi.org/10.1007/978-94-011-0741-9_3 Burckhardt, D. (1987). Jumping plant lice (Homoptera: Psylloidea) of the temperate neotropical region. Part 2: Psyllidae (subfamilies Diaphorininae, Acizziinae, Ciriacreminae and Psyllinae). Zoological Journal of the Linnean Society, 90, 145–205.

    Cabal Concha, A. (1956). Biología y control del gorgojo del café: Araecerus fasciculatus De Geer Fam: (Anthribiidae), en Barranquilla—Colombia. Rev. Fac. Nac. Agron. Medellín, 18(49), 49–72.

    Cachero, S., Ostrovsky, A. D., Yu, J. Y., Dickson, B. J., & Jefferis, G. S. X. E. (2010). Sexual Dimorphism in the Fly Brain. Current Biology, 20(18), 1589–1601. https://doi.org/10.1016/j.cub.2010.07.045 Calder, A. A. (1989). The alimentary canal and nervous system of Curculionoidea (Coleoptera): gross morphology and systematic significance. Journal of Natural History, 23(6), 1205–1265. https://doi.org/10.1080/00222938900770671 Cecil, R. (1930). The alimentary canal of Philaenus leucophthalmus L. The Ohio Journal of Science, 30(2), 120–130.

    Cerezke, H. F. (1964). The morphology and functions of the reproductive systems of Dendroctonus monticolae Hopk. (Coleoptera: Scolytidae). The Canadian Entomologist, 96(03), 477–500. https://doi.org/10.4039/Ent96477-3 Chapman, R. F. (2013). The Insects Structure and Function. (S. J. Simpson & A. E. Douglas, Eds.) (5th ed.). Cambridge: Cambridge University Press.

    Chiappini, E., & Aldini, R. N. (2011). Morphological and physiological adaptations of wood-boring beetle larvae in timber. Journal of Entomological and Acarological Research, 43(2), 47–59. https://doi.org/10.4081/jear.2011.47 Cicero, J. M. (2017). Stylet biogenesis in Bactericera cockerelli (Hemiptera: Triozidae). Arthropod Structure & Development, 46(4), 644–661. https://doi.org/10.1016/j.asd.2016.12.007 Cicero, J. M. (2020). Functional Anatomy of the Asian Citrus Psyllid. In J. A. Qureshi & P. A. Stansly (Eds.), Asian Citrus Psyllid: Biology, Ecology and Management of the Huanglongbing Vector (pp. 12–29). Boston: CABI.

    Cicero, J. M., Alba-Tercedor, J., Hunter, W. B., Cano, L. M., Saha, S., Mueller, L. A., & Brown, S. J. (2018). Asian citrus psyllid stylet morphology and applicability to the model for inter-instar stylet replacement in the potato psyllid. Arthropod Structure & Development, 47(5), 542–551. https://doi.org/10.1016/j.asd.2018.06.007 Cicero, J. M., & Brown, J. (2009). The digestive system of Diaphorina citri and Bactericera cockerelli (Hemiptera: Psyllidae). Entomological Society of America, 102(4), 650–665.

    Cicero, J. M., & Brown, J. (2011). Anatomy of accessory salivary glands of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) and correlations to Begomovirus transmission. Annals of the Entomological Society of America, 104(2): 280-286.

    Cicero, J. M., Hunter, W. B., Cano, L. M., Saha, S., Mueller, L. A., & Brown, S. J. (2018). An animated detailing of the alimentary canal of the Asian citrus psyllid, with special reference to the configuration and function of the filter chamber (online only). Figshare media. Retrieved from https://figshare.com/articles/An_Animated_Detailing_of_the_Alimentary_Canal_of_the_Asian_Citrus_Psyllid_with_Special_Reference_to_the_Configuration_and_Function_of_the_Filter_Chamber/7599269/3 Cicero, J. M., Stansly, P. A., & Brown, J. K. (2015). Functional anatomy of the oral region of the potato psyllid (Hemiptera: Psylloidea: Triozidae). Annals of the Entomological Society of America, 108(5), 743–761. https://doi.org/10.1093/aesa/sav059 Cobb, M. (2002). Malpighi, Swammerdam and the colourful silkworm: replication and visual representation in early modern science. Annals of Science, 59, 111–147. https://doi.org/10.1080/00033790110050759 Cornara, D., Garzo, E., Morente, M., Moreno, A., Alba-Tercedor, J., & Fereres, A. (2018). EPG combined with micro-CT and video recording reveals new insights on the feeding behavior of Philaenus spumarius. PLOS ONE, 13(7), e0199154: 1-20. https://doi.org/10.1371/journal.pone.0199154 Crowson, R. A. (1981). The Biology of the Coleoptera. The Biology of the Coleoptera. London: Academic Press Inc. Retrieved from New York Da Costa Lima, A. (1956). Insetos do Brasil, Volume 10, Coleópteros, Fourth and Last Part; Serie Didática #12. (E. N. de Agronomia, Ed.). Rio de Janeiro, Brazil.

    Da Cruz-Landim, C., Morelli, R. L., De Moraes, S., Salles, H. C., & Reginato, R. D. (1988). Note on glands present in Meliponinae (Hymenoptera, Apidae) bees legs. Revta Bras. Zool., 15(2), 159–155.

    Dahms, E. D. (1984). An interpretation of the structure and function of the antennal sense organs of Melittobia australica (Hymenoptera: Eulophidae) with the discovery of a large dermal gland in the male scape. Mem. Qd Mus., 21(2), 361–385.

    Dan, H., Ikeda, N., Fujikami, M., & Nakabachi, A. (2017). Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid. PLOS ONE, 12(12), e0189779. https://doi.org/10.1371/journal.pone.0189779 De Geer, C. (1775). Memoires pour Servir a l’Histoire des Insectes; Volume 5. Stockholm, Sweden: Pierre Hesselberg.

    De Santis, F., Conti, E., Romani, R., Salerno, G., Parillo, F., & Bin, F. (2008). Colleterial glands of Sesamia nonagrioides as a source of the host-recognition kairomone for the egg parasitoid Telenomus busseolae. Physiological Entomology, 33(1), 7–16. https://doi.org/10.1111/j.1365-3032.2007.00593.x Dmitriev, D. A. (2010). Homologies of the head of Membracoidea based on nymphal morphology with notes on other groups of Auchenorrhyncha (Hemiptera). European Journal of Entomology, 107(4), 597–613. https://doi.org/10.14411/eje.2010.069 Dodge, H. R. (1938). The bark beetles of Minnesota (Coleoptera: Scolytidae). University of Minnesota, Agricultural Experiment Station, Technical Bulletin, 132, 1–60.

    Dossi, Fabio C. A., & Cônsoli, F. L. F. (2014). Gross morphology and ultrastructure of the female reproductive system of Diaphorina citri (Hemiptera: Liviidae). Zoologia, 31(2), 162–169. https://doi.org/10.1590/S1984-46702014000200007 Dossi, Fábio C A, & Cônsoli, F. L. (2010). Desenvolvimento ovariano e influência da cópula na maturação dos ovários de Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Neotropical Entomology, 39(3), 414–419. https://doi.org/10.1590/S1519-566X2010000300015 Drohojowska, J., Kalandyk-Kołodziejczyk, M., & Simon, E. (2013). Thorax morphology of selected species of the genus Cacopsylla (Hemiptera, Psylloidea). ZooKeys, 319, 27–35. https://doi.org/10.3897/zookeys.319.4218 Eaton, C. B. (1942). The Anatomy and Histology of the Proventriculus of Ips radiatae Hopkins. Annals Entomological Society of America, 35, 41–49.

    Fuchs, G. (1912). Morphologische Studien über Borkenkäfer. II Die Europaischen Hylesinen. Verlag von Ernst Reinhard. München.

    Furniss, M. M. (2004). Biology of Trypophloeus striatulus (Coleoptera: Scolytidae) in Feltleaf Willow in Interior Alaska. Environmental Entomology, 33(1), 21–27. https://doi.org/10.1603/0046-225X-33.1.21 Garzo, E., Bonani, J. P., Lopes, J. R. S., & Fereres, A. (2012). Morphological description of the mouthparts of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Arthropod Structure & Development, 41(1), 79–86. https://doi.org/10.1016/j.asd.2011.07.005 Gillott, C. (2005). Entomology. Entomology (3rd ed.). Dordrecht: Springer. Retrieved from www.springeronline.com Głowacka, E., Kuznetsova, V. G., & Maryańska-Nadachowska, A. (1995). Testis follicle number in Psyllids (Psylloidea, Homoptera) as an anatomical feature in studies of systematic relations within the group. Folia Biologica (Kraków), 43(3–4), 115–124.

    Goodchild, A. J. P. (1963). Some new observations on the intestinal structures concerned with water disposal in sap-sucking Hemiptera. Transactions of the Royal Entomological Society of London, 115(88), 217–237. https://doi.org/10.1111/j.1365-2311.1963.tb00820.x Grassé, P.-P. (1975). Le Système Nerveux des Insectes. In Traité de Zoologie. Anatomie, Systématique, Biologie. T.VIII, Insectes. Splachnologie, Phonation, Vie Aquatique, Rapports avec les Plantes. Fasc. IV Systematique, Biologie. T. VIII, fasc. III (Vol. VIII (III), pp. 321–510). Paris: Masson et Cie Grassé, P.-P. (1976). L’Appareil Respiratoire. Traité de Zoologie. Anatomie, Systématique, Biologie. T.VIII, Insectes. Splachnologie, Phonation, Vie Aquatique, Rapports Avec Les Plantes. Fasc. IV, 93–204.

    Greco, M. K., Tong, J., Soleimani, M., Bell, D., & Schäfer, M. O. (2012). Imaging live bee brains using minimally-invasive diagnostic radioentomology. Journal of Insect Science (Online), 12, 89. https://doi.org/10.1673/031.012.8901 Grove, A. J. (1919). The anatomy of the head and mouth parts of Psylla mali, the Apple sucker, with some remarks on the function of the labium. Parasitology, 11(3–4), 456–488. https://doi.org/https://doi.org/10.1017/S0031182000004388 Gullan, P. J., & Cranston, P. S. (2010). Insects: An Outline of Entomology (4th ed.). Willey-Blackwell.

    Hafeez, M. A., & Gardiner, B. G. (1964). The internal morphology of the adult of Tribolium anaphe Hinton (Coleoptera: Tenebrionidae). Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 39(10–12), 137–145. https://doi.org/10.1111/j.1365-3032.1964.tb00996.x Hamilton, K. G. A. (2015). Anatomy: The poor cousin of morphology? American Entomologist, 61(2), 88–95. https://doi.org/10.1093/ae/tmv003 Harrison, J. F. (2009). Tracheal System. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of Insects (pp. 1011–1015). Burlington, San Diego, London: Academic Press. https://doi.org/10.1016/B978-0-12-374144-8.00265-4 Height Chart of Men and Women in Different Countries - Disabled World. (2019). Retrieved from https://www.disabled-world.com/calculators-charts/height-chart.php Heslop-Harrison, G. (1952). XXVII.—The number and distribution of the spiracles of the adult psyllid. Annals and Magazine of Natural History, 5(51), 248-260 + plates XIV-XVI. https://doi.org/10.1080/00222935208654288 Hodin, J. (2009). She shapes events as they come: plasticity in female insect reproduction. (D. W. Whitman & T. N. Ananthakrishnan, Eds.), Phenotypic plasticity of insects: mechanisms and consequences. Enfield (USA): Science Publishers, Inc. https://doi.org/Enfield, Science Publishers.

    Hodkinson, I. D., & White, I. M. (1979). Homoptera Psylloidea. (A. Watson, Ed.). London: Royal Entomological Society of London.

    Hopkins, A. D. (1909). Contribution towards a monograph of the scolytids beetles. I. The genus Dendroctonus. Technical series, Bureau of Entomology, U.S. Departament of Agriculture (Vol. 17).

    Hubert, J.-F., Thomas, D., Cavalier, A., & Gouranton, J. (1989). Structural and biochemical observations on specialized membranes of the “filter chamber”, a water-shunting complex in sap-sucking homopteran insects. Biology of the Cell (Vol. 66).

    Iwan, D., Kamiński, M. J., & Raś, M. (2015). The Last Breath: A μCT-based method for investigating the tracheal system in Hexapoda. Arthropod Structure & Development, 44(3), 218–227. https://doi.org/10.1016/j.asd.2015.02.002 Jiménez, J., Garzo, E., Alba-Tercedor, J., Moreno, A., Fereres, A., & Walker, G. P. (2020). The phloem-pd: a distinctive brief sieve element stylet puncture prior to sieve element phase of aphid feeding behavior. Arthropod-Plant Interactions, 14, 67–78. https://doi.org/10.1007/s11829-019-09708-w Kaiser, A., Klok, C. J., Socha, J. J., Lee, W.-K., Quinlan, M. C., & Harrison, J. F. (2007). Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proceedings of the National Academy of Sciences, 104(32), 13198–13203. https://doi.org/10.1073/pnas.0611544104 Keil, T. A. (1999). Morphology and Development of the Peripheral Olfactory Organs. In Insect Olfaction (pp. 5–47). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07911-9_2 Kershaw, J. (1914). The alimentary canal of a Cercopid. Psyche (New York), 21(2), 65–72. https://doi.org/10.1155/1914/82321 Klass, K.-D., Matushkina, N. A., & Kaidel, J. (2012). The gonangulum: A reassessment of its morphology, homology, and phylogenetic significance. Arthropod Structure & Development, 41(4), 373–394. https://doi.org/10.1016/J.ASD.2012.03.001 Kruse, A., Fattah-Hosseini, S., Saha, S., Johnson, R., Warwick, E., Sturgeon, K., … Cilia Heck, M. (2017). Combining ’omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the Huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut. PLOS ONE, 12(6), e0179531. https://doi.org/10.1371/journal.pone.0179531 Kuechler, S. M., Renz, P., Dettner, K., & Kehl, S. (2012). Diversity of symbiotic organs and bacterial endosymbionts of: Lygaeoid bugs of the families blissidae and lygaeidae (Hemiptera:: Heteroptera: Lygaeoidea). Applied and Environmental Microbiology, 78(8), 2648–2659. https://doi.org/10.1128/AEM.07191-11 Liang, X., Zhang, C., Li, Z., Xu, L., & Dai, W. (2013). Fine structure and sensory apparatus of the mouthparts of the pear psyllid, Cacopsylla chinensis (Yang et Li)(Hemiptera: Psyllidae). Arthropod Structure & Development, 42(6), 495–506.

    Lindroth, C. H., & Palmen, E. (1970). Coleoptera. In S. L. Tuxen (Ed.), Taxonomist’s glossary of genitalia in insects (pp. 80–88). Copenhagen, Munksgaard: Scandinavian University Books.

    Lindsay, K. L., & Marshallt, A. T. (1980). Ultrastructure of the filter chamber complex in the alimentary canal of Eurymela distincta Signoret (Homoptera, Eurymelidae). Int. J. Insect Morphol. & Embryol (Vol. 9).

    López-Guillén, G., Carrasco, J. V., Cruz-López, L., Barrera, J. F., Malo, E. A., & Rojas, J. C. (2011). Morphology and Structural Changes in Flight Muscles of Hypothenemus hampei (Coleoptera: Curculionidae) Females. Environmental Entomology, 40(2), 441–448. https://doi.org/10.1603/EN10181 Luo, X., Yen, A. L., Powell, K. S., Wu, F., Wang, Y., Zeng, L., … Cen, Y. (2015). Feeding Behavior of Diaphorina citri (Hemiptera: Liviidae) and Its Acquisition of “Candidatus Liberibacter Asiaticus”, on Huanglongbing-Infected Citrus reticulata Leaves of Several Maturity Stages. Florida Entomologist, 98(1), 186–192. https://doi.org/10.1653/024.098.0132 Mally, C. W. (1894). Psyllidae found at Ames. Proceedings of the Iowa Academy of Science, 2(1), 152–171.

    Malpighi, M. (1669). Dissertatio epistolica de bombyce. London: J. Martyn & J. Allestry, regiæ societatis typographos.

    Mankin, R. W., & Rohde, B. (2020). Mating behavior of the Asian Citrus Psyllid. In J. A. Qureshi & P. A. Stansly (Eds.), Asian Citrus Psyllid: Biology, Ecology and Management of the Huanglongbing Vector (pp. 30–42). Boston.

    Marchini, D., Del Bene, G., Viscuso, R., & Dallai, R. (2012). Sperm Storage by Spermatodoses in the Spermatheca of Trioza alacris (Flor, 1861) Hemiptera, Psylloidea, Triozidae: A Structural and Ultrastructural Study. J. Morphol, 273, 195–210. https://doi.org/10.1002/jmor.11017 Mathur, R. N. (1975). Psyllidae of the Indian subcontinent. (U. S. Jain, Ed.). Madras: Indian Council of Agricultural Research, New Delhi.

    Matsuda, R. (1976a). The female efferent duct and associated structures. In Morphology and Evolution of the Insect Abdomen (pp. 97–104). Oxford: Pergamon Press Ltd. https://doi.org/10.1016/B978-0-08-018753-2.50018-6 Matsuda, R. (1976b). The Homoptera. In Morphology and Evolution of the Insect Abdomen (pp. 280–299). Oxford: Pergamon Press Ltd. https://doi.org/10.1016/B978-0-08-018753-2.50040-X Matsuura, Y., Kikuchi, Y., Hosokawa, T., Koga, R., Meng, X. Y., Kamagata, Y., … Fukatsu, T. (2012). Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME Journal, 6(2), 397–409. https://doi.org/10.1038/ismej.2011.103 Mbata, K. J. (1985). The anatomy of the armoured ground cricket, Acanthoplus speiseri Brancsik 1895 (Orthoptera: Tettigoniidae, Hetrodinae). Retrospective Theses and Dissertations. Iowa State University Capstones. Retrieved from https://lib.dr.iastate.edu/rtd Miller, P. L. (1960). Respiration in the desert locust: III. Ventilation and the spiracles during flight. J. Exp. Biol., 37(2), 264–278.

    Morgan, J. K., Luzio, G. A., Ammar, E.-D., Hunter, W. B., Hall, D. G., & Shatters Jr, R. G. (2013). Formation of Stylet Sheaths in āere (in air) from Eight Species of Phytophagous Hemipterans from Six Families (Suborders: Auchenorrhyncha and Sternorrhyncha). PLoS ONE, 8(4), e62444. https://doi.org/10.1371/journal.pone.0062444 Muir, F. (1930). LIII.—Notes on certain controversial points of morphology of the abdomen and genitalia of Psyllidæ. Annals and Magazine of Natural History, Series 10, 5(29), 545–552. https://doi.org/10.1080/00222933008673163 Nakabachi, A., Ueoka, R., Oshima, K., Teta, R., Mangoni, A., Gurgui, M., Fukatsu, T. (2013). Defensive Bacteriome Symbiont with a Drastically Reduced Genome. Current Biology, 23(15), 1478–1484. https://doi.org/10.1016/J.CUB.2013.06.027 Nijs, C., & Billen, J. (2015). Exocrine glands in the legs of the social wasp Vespula vulgaris. Arthropods Structure and Development, 44, 433–443. https://doi.org/10.1016/j.asd.2015.08.011 Nobuchi, A. (1969). A Comparative Morphological Study of the Proventriculus in the Adult of the Superfamily Scolytoidea (Coleoptera). Bull. Gov. For. Exp. Stn. (Jpn.), 224, 40–58.

    Nocelli, R. C., Cintra-Socolowski, P., Roat, T. C., Silva-Zacarin, elaine C., & Malaspina, O. (2016). Comparative physiology of Malpighian tubules: form and function. https://doi.org/10.2147/OAIP.S72060 Nüsslin, O. (1911). Phylogenie und System der Borkenkäfer. Zeitschrift Für Wissenschaftliche Insektenbiologie., 7, 1–5.

    Onagbola, E. O. E., Meyer, W. W. L., Boina, R., Stelinski, L. L., Boina, D., & Stelinski, L. L. (2008). Morphological characterization of the antennal sensilla of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), with reference to their probable. Micron, 39, 1184–1191. https://doi.org/10.1016/j.micron.2008.05.002 Ossiannilsson, F. (1992). The Psylloidea (Homoptera) of Fennoscandia and Demark. E.J. Brill.

    Ouvrard, D., Bourgoin, T., & Campbell, B. C. (2002). Comparative Morphological Assessment of the Psyllid Pleuron (Insecta, Hemiptera, Sternorrhyncha). J. Morphol, 252, 276–290. https://doi.org/10.1002/jmor.1105 Pascini, T. V., & Martins, G. F. (2017). The insect spermatheca: an overview. Zoology, 121, 56–71. https://doi.org/10.1016/J.ZOOL.2016.12.001 Pesson, P. (1951). Ordre des Homoptères (Homoptera Leach, 1815). In P.-P. Grassé (Ed.), Traité de zoologie. Anatomie, systématique, biologie. Tome X. Fascicule II. Insectes supérieurs et Hémipteróides (Editions M, pp. 1390–1656). Paris: Masson et Cie.

    Prophetou-Athanasiadou, D. A., & Tzanakakis, M. E. (1998). The Reproductive System and Ovarian Development of the Adult Olive Psylla Euphyllura phillyreae Foerster (Homoptera: Aphalaridae). Entomologia Hellenica, 12, 37–45. https://doi.org/http://dx.doi.org/10.12681/eh.14018 Qadri, M. A. H. (1949). On the morphology and post-embryonic development of the male genitalia and their ducts in Hemiptera. Journal of the Zoological Society of India, 1, 129--143.

    Raś, M., Iwan, D., & Kamiński, M. J. (2018). The tracheal system in post-embryonic development of holometabolous insects: a case study using the mealworm beetle. Journal of Anatomy, 232(6), 997–1015. https://doi.org/10.1111/joa.12808 Ren, S.-L., Li, Y.-H., Ou, D., Guo, Y.-J., Qureshi, J. A., Stansly, P. A., … Bao-Li Qiu, C. (2018). Localization and dynamics of Wolbachia infection in Asian citrus psyllid Diaphorina citri, the insect vector of the causal pathogens of Huanglongbing. Microbiology Open, 7, 561. https://doi.org/10.1002/mbo3.561 Renthal, R., Velasquez, D., Olmos, D., & Vinson, S. B. (2008). Occurrence of antennal glands in ants. Microscopy Research and Technique, 71(11), 787–791. https://doi.org/10.1002/jemt.20620 Ribi, W., Senden, T. J., Sakellariou, A., Limaye, A., & Zhang, S. (2008). Imaging honey bee brain anatomy with micro-X-ray-computed tomography. Journal of Neuroscience Methods, 171(1), 93–97.

    Richards, O., & Davies, R. (1977). The respiratory system. In O. Richards & R. Davies (Eds.), A General Textbook of Entomology (pp. 209–233). London: Chapman and Hall.

    Robertson, C. H. (1962). The anatomy of the respiratory system of the Passalus beetle, Popilius disjunctus (Illiger). American Midland Naturalist, 68(2), 376–393.

    Román-Ruiz, A. K., Michel, B., Dufour, B. P., Rojas, J. C., Cruz-López, L., & Barrera, J. F. (2017). Description of the sperm and spermatheca of Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) for the differentiation of mated and unmated females. Annals of the Entomological Society of America, 110(4), 353–359. https://doi.org/10.1093/aesa/sax033 Ruan, Y., Y., L., Zhang, M., Chen, X., Liu, Z., Wang, S., & Jiang, S. (2018). Visualisation of insect tracheal systems by lactic acid immersion. Journal of Microscopy, 271(2), 230–236. https://doi.org/10.1111/jmi.12711 Rubio-Gómez, J. D., Bustillo-Pardey, Á. E., Vallejo-Espinosa, L. F., Benavides-Machado, P., Acuña-Zornosa, J. R., Rubio, R., & Bustillo, J. D. ; (2007). Morfología del sistema reproductor femenino y masculino de Hypothenemus hampei (Ferrari). Cenicafé, 58(1), 75–81.

    Rubio G., J. D., Bustillo P., A. E., Vallejo E., L. F., Acuña Z., J. R., & Benavides M., P. (2008). Alimentary canal and reproductive tract of Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae, Scolytinae). Neotropical Entomology, 37(2), 143–151. https://doi.org/10.1590/S1519-566X2008000200006 Rybak, J., Kuß, A., Lamecker, H., Zachow, S., Hege, H.-C., Lienhard, M., … Menzel, R. (2010). The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System. Frontiers in System Neuroscience, 4, article(July), 1–15. https://doi.org/10.3389/fnsys.2010.00030 Santiago-Blay, J. A., & Young, T. L. (1995). Reliable sexing of adult Conophthorus (Coleoptera: Scolytidae) beetles. The Canadian Entomologist, 127(4), 605–607. https://doi.org/10.4039/Ent127605-4 Saunders, L. G. (1921). The Anatomy of Psyllia mali Schmidberger. Manuscript Thesis (M. Sc.) McGill University. Montreal.

    Schedl, K. E. (1960). Insectes nuisibles aux fruits et aux graines. Publications de l’institut National Pour l’étude Agronomique Du Congo Belge, Série Scientifique, 82, 1–133.

    Schlee, D. (1969). Sperma-übertragung (und andere merkmale) in ihrer bedeutung für das phylogenetische system der sternorrhyncha (insecta, hemiptera) Phylogenetische studien an hemiptera I. psylliformes (psyllina und aleyrodina) als monophyletische gruppe. Z. Morph. Tiere, 64, 95–138. https://doi.org/https://doi.org/10.1007/BF00391783 Smith, D. B., Bernhardt, G., Raine, N. E., Abel, R. L., Sykes, D., Ahmed, F., … Gill, R. J. (2016). Exploring miniature insect brains using micro-CT scanning techniques. Scientific Reports, 6, 21768. https://doi.org/10.1038/srep21768 Snodgrass, R. E. (1935). Principles of Insect Morphology. New York & London: McGraw-Hill Book Company, Inc. https://doi.org/0801428831 Sombke, A., Lipke, E., Michalik, P., Uhl, G., & Harzsch, S. (2015). Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. The Journal of Comparative Neurology, 523(8), 1281–1295. https://doi.org/10.1002/cne.23741 Srivastava, K. P. (1976). On the respiratory system of the lemon-butterfly, Papilio demoleus l. (Lepidoptera: Papilionidae). Australian Journal of Entomology, 14(4), 363–370. https://doi.org/10.1111/j.1440-6055.1975.tb02052.x Stacconi, M., & Romani, R. (2011). Ultrastructural and functional aspects of the spermatheca in the american harlequin bug, Murgantia histrionica (Hemiptera: Pentatomidae). Neotropical Entomology, 40(2), 222–230. https://doi.org/10.1590/S1519-566X2011000200011 Swaine, J. M. (1918). Canadian bark-beetles. Part II. A preliminary classification with an account of the habits and means of control. (Technical Bulletin). Dominion of Canada, Department of Agriculture, Entomological Branch, Bulletin No. 14, 1–143.

    Tonapi, G. T. (1978). Some adaptive features in the respiratory system of Dineutes indicus Aubé (Coleoptera, Gyrinidae). Zoologica Scripta, 6(2), 107–112. https://doi.org/10.1111/j.1463-6409.1978.tb00790.x Triplehorn, C. A., & Johnson, N. F. (2005). Borror and De Long’s Introduction to the Study of Insects, 7th edition.

    Varón, E. H., Hanson, P., Borbón, O., Carballo, M., & Hilje, L. (2004). Potencial de hormigas como depredadores de la broca del café (Hypothenemus hampei) en Costa Rica. Manejo Integr. Plagas Agroecol., 73, 42–50.

    Vega, F. E., Infante, F., & Johnson, A. J. (2015). The genus Hypothenemus, with emphasis on H. hampei, the coffee berry borer. In Bark Beetles (pp. 427–494). Elsevier. https://doi.org/10.1016/B978-0-12-417156-5.00011-3 Vega, F. E., Simpkins, A., Bauchan, G., Infante, F., Kramer, M., & Land, M. F. (2014). On the eyes of male coffee berry borers as rudimentary organs. PloS One, 9(1), e85860. https://doi.org/10.1371/journal.pone.0085860 Vega, F. E., Simpkins, A., Bauchan, G., Valdéz-Carrasco, J. M., Castillo, A., & Infante, F. (2015). A mysterious wing spine in male coffee berry borers (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist, 98(1), 352–353. https://doi.org/10.1653/024.098.0155 Wasserthal, L. T., Cloetens, P., Fink, R. H., & Wasserthal, L. K. (2018). X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Calliphora vicina , analysing the ventilation mechanism and flow-directing valves. The Journal of Experimental Biology, 221(12), jeb176024. https://doi.org/10.1242/jeb.176024 Waters, J. S., Lee, W.-K., Westneat, M. W., & Socha, J. J. (2013). Dynamics of tracheal compression in the horned passalus beetle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(8), R621–R627. https://doi.org/10.1152/ajpregu.00500.2012 Weber, H. (1929). Kopf und thorax von Psylla mali Schmidb. (Hemiptera-Homoptera). Eine morphogenetische studie. Z. Morph. Ökol. Tiere, 14, 59–165.

    Weintraub, P. G., Hoch, H., Mühlethaler, R., & Zchori-Fein, E. (2014). Synchrotron X-ray micro-computed tomography as a tool for in situ elucidation of insect bacteriomes. Arthropod Structure & Development, 43(2), 183–186. https://doi.org/10.1016/j.asd.2013.11.002 Weis-Fogh, T. (1964). Functional design of the tracheal system of flying insects as compared with the avian lung. Journal of Experimental Biology, 41(2), 207–227. Retrieved from http://jeb.biologists.org/content/jexbio/41/2/207.full.pdf Weis-Fogh, T. (1967). Respiration and tracheal ventilation in locusts and other flying insects. Journal of Experimental Biology, 47, 561–587. Retrieved from http://jeb.biologists.org/content/47/3/561.short Wenninger, E. (2008). Behavioral evidence for a female‐produced sex attractant in Diaphorina citri. Entomologia Experimentalis et Applicata, 128450–459.

    Westneat, M. W. (2003). Tracheal Respiration in Insects Visualized with Synchrotron X-ray Imaging. Science, 299(5606), 558–560. https://doi.org/10.1126/science.1078008 Wigglesworth, V. B. (1930). A Theory of Tracheal Respiration in Insects. Proceedings of the Royal Society B: Biological Sciences, 106(743), 229–250. https://doi.org/10.1098/rspb.1930.0024 Wigglesworth, V. B. (1942). The principles of insect physiology (2nd ed.). London: Methuen & CO. LTD.

    Wilkinson, H. (1928). The Coffee Berry Borer Beetle Stephanoderes hampei (Ferr.). Nairobi, Kenya: The Government Printer; Colony and Protectorate of Kenya.

    Wipfler, B., Pohl, H., Yavorskaya, M. I., & Beutel, R. G. (2016, December 1). A review of methods for analysing insect structures — the role of morphology in the age of phylogenomics. Current Opinion in Insect Science. Elsevier Inc. https://doi.org/10.1016/j.cois.2016.09.004 Witlaczil, E. (1885). Die Anatomie der Psylloden. Zeitschrift Für Wissenschaftliche Zoologie, 42, 569-638 + 3 tafeln.

    Wood, S. L. (1954). A revision of North American Cryphalini (Scolytidae: Coleoptera). Univ. Kansas Sci. Bull, (36), 959–1089.

    Wood, S. L. (2007). Bark and Ambrosia Beetles of South America (Coleoptera, Scolytidae). Brigham Young University.

    Yen, A., & Burckhardt, D. (2017). Diagnostic protocol for the detection of the tomato potato Psyllid, Bactericera cockerelli (Šulc) prepared for the Subcommittee on Plant Health Diagnostic Standards (SPHDS). resources/ Zheng, L., Liang, Q., Yu, M., Cao, Y., & Chen, W. (2020). Morphological characterization of antennae and antennal sensilla of Diaphorina citri Kuwayama (Hemiptera: Liviidae) nymphs. PLOS ONE, 15(6), e0234030. https://doi.org/10.1371/journal.pone.0234030 Zucht, B. (1972). Bau und Entwicklung der äußeren Genitalorgane bei Psyllinen (Homopteren). Zool. Jb. Anat. Bd., 231, 167–231.

    Zunino, M. (2012). Cuarenta años de anatomía de las piezas genitales en la taxonomía de los escarabajos (Coleoptera : Scarabaeoidea): el estado del arte. Dugesiana, 18(2), 197–206.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus