Esta tesis presenta trabajo sobre análisis de dependencias que cubre dos líneas de investigación distintas. La primera tiene como objetivo desarrollar analizadores eficientes, de modo que sean suficientemente rápidos como para analizar grandes volúmenes de datos y, al mismo tiempo, sean suficientemente precisos. Investigamos dos métodos. El primero se basa en teorías cognitivas y el segundo usa una técnica de destilación. La primera técnica resultó un enorme fracaso, mientras que la segunda fue en cierto modo un ´éxito. La otra línea evalúa los analizadores sintácticos. Esto también se hace de dos maneras. Evaluamos la causa de la variación en el rendimiento de los analizadores para distintos algoritmos y corpus. Esta evaluación utiliza la diferencia entre las distribuciones del desplazamiento de arista (la distancia dirigida de las aristas) correspondientes a cada algoritmo y corpus. También evalúa la diferencia entre las distribuciones del desplazamiento de arista en los datos de entrenamiento y prueba. Este trabajo esclarece las variaciones en el rendimiento para algoritmos y corpus diferentes. La segunda parte de esta línea investiga la utilidad de las etiquetas gramaticales para los analizadores sintácticos.
This thesis presents work on dependency parsing covering two distinct lines of research. The first aims to develop efficient parsers so that they can be fast enough to parse large amounts of data while still maintaining decent accuracy. We investigate two techniques to achieve this. The first is a cognitively-inspired method and the second uses a model distillation method. The first technique proved to be utterly dismal, while the second was somewhat of a success. The second line of research presented in this thesis evaluates parsers. This is also done in two ways. We aim to evaluate what causes variation in parsing performance for different algorithms and also different treebanks. This evaluation is grounded in dependency displacements (the directed distance between a dependent and its head) and the subsequent distributions associated with algorithms and the distributions found in treebanks. This work sheds some light on the variation in performance for both different algorithms and different treebanks. And the second part of this area focuses on the utility of part-of-speech tags when used with parsing systems and questions the standard position of assuming that they might help but they certainly won’t hurt.
Esta tese presenta traballo sobre análise sintáctica, cubrindo dúas liñas de investigación. A primeira aspira a desenvolver analizadores eficientes, de maneira que sexan suficientemente rápidos para procesar grandes volumes de datos e á vez sexan precisos. Investigamos dous métodos. O primeiro baséase nunha teoría cognitiva, e o segundo usa unha técnica de destilación. O primeiro método foi un enorme fracaso, mentres que o segundo foi en certo modo un éxito. A outra liña avalúa os analizadores sintácticos. Esto tamén se fai de dúas maneiras. Avaliamos a causa da variación no rendemento dos analizadores para distintos algoritmos e corpus. Esta avaliaci´on usa a diferencia entre as distribucións do desprazamento de arista (a distancia dirixida das aristas) correspondentes aos algoritmos e aos corpus. Tamén avalía a diferencia entre as distribucións do desprazamento de arista nos datos de adestramento e proba. Este traballo esclarece as variacións no rendemento para algoritmos e corpus diferentes. A segunda parte desta liña investiga a utilidade das etiquetas gramaticais para os analizadores sintácticos.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados