Ayuda
Ir al contenido

Dialnet


Resumen de Design and application of nanomaterial-based lateral flow devices

Daniel Quesada González

  • Lateral flow biosensors are paper-based devices of high relevance in point-of-care diagnostics and environmental monitoring. These devices are low-cost, fast, robust and simple to use.

    In this research, lateral flow biosensors are applied for the detection of uranium ions in drinking water with high selectivity and low assay time. The limit of detection reached in this assay was of 40 nM, three times lower than the maximum amount of uranium recommended in consume water.

    Also, a novel colorimetric signal enhancement strategy on lateral flow strips is reported. Cellulose nanofibers can be introduced into nitrocellulose pores, the matrix in which lateral flow reactions occur, increasing the area where biomolecules can be attached, increasing then the probability of stopping label particles on positive samples. Following this strategy, a 30% of color signal enhancement was achieved.

    And last, iridium oxide nanoparticles are reported for the first time on lateral flow assays as colorimetric labels. The electrocatalytical properties of this nanomaterial allow, besides the colorimetric response, electrochemical quantification of the sample as it is demonstrated by detecting polybrominated diphenyl ethers using iridium oxide nanoparticles on screen printed carbon electrodes.

    The state-of-the art studies carried out resulted in three review publications: • Quesada-González, D. & Merkoçi, A. “Nanoparticle-based lateral flow biosensors”. Biosens. Bioelectron. 73, 47–63 (2015).

    • Quesada-González, D. & Merkoçi, A. “Mobile phone–based biosensing: an emerging ‘diagnostic and communication’ technology”. Biosens. Bioelectron. 92, 549–562 (2016).

    • Quesada-González, D. & Merkoçi, A. “Nanomaterial-Based Devices for Point-of-Care Diagnostic Applications”. Chem. Soc. Rev. 47, 4697–4709 (2018).

    Also the experimental work performed conducted to four full length articles not yet published: • Quesada-González, D.; Jairo, G. A.; Blake, R.C., Blake, D.A. & Merkoçi, A. “Uranium (VI) detection in groundwater using a gold nanoparticle/paper-based lateral flow device”. Under revision (2018).

    • Quesada-González, D.; Stefani, C.; González, I.; de la Escosura-Muñiz, I.; Domingo, N.; Mutjé, P. & Merkoçi, A. “Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers”. In preparation (2018).

    • Quesada-González, D.; Baiocco, A.; Martos, A. A.; de la Escosura-Muñiz, A.; Palleschi, G. & Merkoçi, A. “Iridium oxide (IV) nanoparticle-based electrocatalytic detection of PBDE”. Under revision (2018).

    • Quesada-González, D.; Sena-Torralba, A.; Wicaksono, W. P.; de la Escosura-Muñiz, A.; Ivandini, T. A. & Merkoçi A. “Iridium oxide (IV) nanoparticle-based lateral flow immunoassay”. In preparation (2018).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus