Los procesos de conformado de chapa se usan extensivamente para fabricar carrocerías de automóviles, fuselajes de aeronaves, revestimientos de electrodomésticos, etc. Los principales problemas de conformabilidad en tales procesos están generalmente asociados al fallo de la chapa en zonas geométricamente exigentes, e.g. pequeños radios de curvatura en punzones o matrices. En dichas zonas el material está sometido a un importante gradiente de tensiones y deformaciones a través del espesor, lo que influye decisivamente en el desarrollo de los mecanismos de fallo.
En la literatura son muy numerosos los trabajos basados en analizar el fallo de la chapa en condiciones de deformación uniforme o con gradientes muy suaves, principalmente aquellos asociados con la estimación de los Diagramas Límite de Conformado (Forming Limit Diagram, FLD) con punzones planos o hemiesféricos con radios grandes, donde predomina la estricción como mecanismo de fallo. En el otro extremo se encuentran también trabajos muy exhaustivos sobre el análisis de procesos de plegado de chapa, en general en condiciones de deformación plana, en los que sólo existe flexión en el espesor de la chapa, y donde es la fractura el mecanismo que controla el fallo del material. No obstante, es justamente en el terreno intermedio, esto es, donde se mezclan flexión y tracción a un mismo nivel, donde el conocimiento es más disperso. En estas situaciones, los mecanismos de estricción localizada y de fractura dúctil actúan a la par, lo que hace necesario definir claramente el acoplamiento entre ambos y distinguir bajo qué condiciones domina uno sobre el otro, en función del gradiente deformaciones en el espesor de la chapa. Los modelos de predicción de fallo en estas condiciones son escasos, y en general se restringen a estirados con flexión en condiciones de deformación plana, esto es, con una sola curvatura en la chapa.
Este panorama se traslada también a los métodos experimentales. Si bien, recientemente se ha hecho un gran esfuerzo en normalizar la determinación de la estricción localizada para la obtención de los FLD convencionales, esto es, con radios de curvatura grandes (ISO 12004-2:2008). Dichos métodos no son directamente aplicables a casos con radios pequeños, en los que los efectos de la flexión aumentan y la zona de deformación se reduce a medida que disminuye el radio del punzón.
Estas carencias detectadas tanto en el plano de simulación y predicción de fallo, como en el plano experimental son la hipótesis de partida y la motivación para el desarrollo de la presente tesis. Por tanto, este trabajo tiene como objetivo general contribuir a mejorar el conocimiento experimental y teórico-numérico sobre el efecto combinado de la tracción-flexión en el fallo de chapas metálicas. Esto se materializa en tres objetivos parciales:
1. El desarrollo de metodologías robustas y fiables para detectar el inicio de la estricción localizada y estimar las deformaciones límite en condiciones de fuerte gradiente de deformaciones/tensiones mediante el análisis en el tiempo de las deformaciones medidas empleando la técnica de correlación de imágenes digitales (Digital Image Correlation, DIC). Al contrario de lo que se pueda pensar, no existe actualmente una metodología fiable y aceptada para este problema. De hecho, la norma ISO 12004-2:2008 propone un método espacial basado en el clásico análisis del instante justo antes de la fractura, el cual está orientado exclusivamente al ensayo de Nakazima y/o Marciniak donde los gradientes de deformaciones/tensiones son nulos o muy suaves.
2. La generación de resultados experimentales bajo condiciones controladas de tracción-flexión que permitan caracterizar el proceso de fallo y sirvan como soporte para el desarrollo de un modelo de predicción de fallo adecuado. Para este estudio se han seleccionado chapas de AA7075-O de 1.6mm de espesor.
3. La realización de un modelo 3D de elementos finitos que simule de forma realista los ensayos experimentales anteriores. Las evoluciones de las tensiones/ deformaciones a través de todo el espesor de la chapa obtenidas de dicho modelo numérico sirven como datos de entrada para la aplicación de un modelo de fallo que describa adecuadamente el inicio de la estricción ante las diferentes situaciones de tracción-flexión a las que se ha sometido el AA7075-O.
Brevemente, se han propuesto dos metodologías alternativas para la detección de la inestabilidad plástica, una dependiente del tiempo (time-dependent method) y otra dependiente del tiempo y de la posición (método del valle). Se ha comprobado que la aplicación de éstas a los ensayos de estirado y estirado con flexión de AA7075-O proporcionan predicciones de las deformaciones límite de conformado muy similares y consistentes con la evidencia experimental, siendo su principal soporte que están basadas en la descripción física del inicio y posterior desarrollo de la estricción localizada.
Por otro lado, el modelo numérico 3D ha sido validado satisfactoriamente, poniéndose de manifiesto que todas las variables medidas experimentalmente, e.g. deformaciones en la cara exterior medidas mediante las técnicas DIC, fuerzas y desplazamientos, son reproducidas fielmente por el mismo. Se ha empleado un modelo de fallo basado en considerar que el fallo por estricción bajo la presencia de gradientes de deformaciones/tensiones está controlado por el desarrollo de daño en un cierto volumen de material medido desde la cara interior de la chapa, en combinación con las Teorías de Distancias Críticas y el concepto de curvas límite de conformado en tensiones (Forming Limit Stress Curve, FLSC). Según éste, se postula que el inicio de la estricción localizada comienza cuando el valor promedio de las tensiones ?1 - ?3 vs. ?2 - ?3 en una determinada distancia crítica, medida desde la cara interior de la chapa (cara cóncava), intersecta la curva límite de estricción en tensiones (FLSC) obtenida para el material en estudio en situaciones sin flexión. La aplicación de dicho modelo de fallo a los ensayos de estirado con flexión, usando punzones de ?20mm, ?10mm, ?5mm, ?3mm y ?1mm, ha sido capaz de predecir razonablemente bien los resultados experimentales obtenidos con las metodologías propuestas en esta tesis, para diferentes valores de la distancia crítica entre un 0% y un 50% del espesor inicial de la chapa.
La tesis se estructura en seis capítulos. En el Capítulo 1 se revisan las principales metodologías experimentales para la construcción de las curvas límite de conformado convencionales (FLC) y se introduce una herramienta alternativa necesaria para caracterizar la conformabilidad, la curva límite de conformado en tensiones (FLSC). Por último, se analiza la influencia del efecto del gradiente de deformaciones/tensiones en el fallo de las chapas y se presenta un modelo de fallo para su correcta estimación. El Capítulo 2 presenta el estudio experimental llevado a cabo sobre AA7075-O de 1.6mm de espesor, esto es, su caracterización mecánica, la obtención del FLC normalizado y la realización de una batería de ensayos bajo condiciones controladas de tracción-flexión. En el Capítulo 3, se proponen dos nuevas metodologías para la detección de la estricción cuya aplicabilidad es general y se discuten las capacidades predictivas de éstas, y de otras existentes en la literatura, a la luz de los resultados experimentales.
El Capítulo 4 aborda el desarrollo, calibración y validación de un modelo robusto de elementos finitos 3D que simula los ensayos experimentales anteriores y que permitirá predecir numéricamente el proceso de fallo en dichas situaciones empleando el modelo de fallo propuesto en el Capítulo 1. En el Capítulo 5 se analizan las evoluciones numéricas de las deformaciones y tensiones a través del espesor de la chapa, a fin de comprender el efecto del gradiente en el fallo de una chapa sometida a diferentes niveles de la flexión. Igualmente se presentan las predicciones numéricas para el inicio de la estricción, acorde al modelo de fallo propuesto basado en tensiones, para los ensayos de estirado con flexión y se comparan con los resultados experimentales. Por último, en el Capítulo 6 se resumen las principales conclusiones de esta tesis y algunos de los posibles desarrollos futuros.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados