Ayuda
Ir al contenido

Dialnet


Experimental study and numerical modelling of soil-roots hydro-mechanical interactions

  • Autores: Alessandro Fraccica
  • Directores de la Tesis: Enrique Edgar Romero Morales (dir. tes.), Thierry Fourcaud (codir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Alberto Ledesma Villalba (presid.), Cristina Jommi (secret.), Loïc Brancheriau (voc.), Evelyne Kolb (voc.), Slobodan Mickovski (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería del Terreno por la Universidad Politécnica de Catalunya
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The thesis is aimed at characterising the multi-scale and hydro-mechanical behaviour of lightly compacted silty sand penetrated by a turf-grass (Cynodon Dactilon). The study will allow better assessing the impact of vegetation on this compacted soil that has been used in an experimental and fully-instrumented embankment.

      The literature agrees that roots are enhancing soil shear strength properties while contrasting results have been found in terms of soil hydraulic behaviour. Moreover, there is a lack of information on how roots affect soil microstructure and its consequences at the macroscopic scale (soil hydraulic behaviour, volume change and shear strength properties).

      A protocol for soil compaction and roots growth was followed for preparing all the tested samples. The soil was lightly compacted, wetted under unconfined conditions to favour plant growth, and then dried up to different hydraulic states. The same soil, plant and seeding density used in the monitored embankment were adopted. Several techniques were exploited to characterise roots geometrical and mechanical features.

      Large cell triaxial and direct shear tests were performed under saturated and partially saturated conditions. Different stress-strain responses were observed in the vegetated soil at different hydraulic states, due to different roots failure mechanisms and to the combination of water availability and the suction within the soil. Results were interpreted with several constitutive stress expressions for partially saturated soils to consider these state and stress variables. Larger compression deformations on shearing were systematically observed on rooted samples. Roots slightly affected the friction angle but generated an increase in soil cohesion. These observations were confirmed by direct tensile tests performed at different roots growth stages and hydraulic states. A constitutive expression was proposed to predict the increase in cohesion knowing the properties of roots and the soil hydraulic state. Concerning the hydraulic behaviour, roots induced a systematic increase in soil water-saturated permeability. Water retention properties were also affected, with a decrease in the retention capacity as roots volume increased. Micro-CT tomography and mercury intrusion porosimetry were carried out at different soil hydraulic states on samples including plant individuals to obtain information about changes in soil microstructure. Reconstructed information from the two techniques showed that roots were generally increasing macropores (larger than 100 micrometres) due to fissuring and soil-root interface phenomena while reducing smaller pores (below 5 micrometres) due to mucilage clogging. The opening of fissures was enhanced on concurrent soil and roots shrinkage upon drying. The alterations generated by roots growth on the soil structure allowed explaining not only the different soil hydraulic responses but also the soil volume change behaviour. A good agreement between the volume of fissures and the volume of roots was found and allowed calibrating and validating a model able to predict the soil water retention properties and permeability values based on the microstructural changes observed.

      Results were used to simulate the effect of different periods of plants growth on the hydro-mechanical behaviour of the monitored embankment during a rainfall event. The vegetated slopes remained stable throughout the simulation, even when completely saturated, thanks to the mechanical reinforcement of the roots. Nevertheless, the higher permeability within the vegetated soil had a negative consequence, which was evidenced by a drastic drop in the slope stability safety factor at the early stages of the hydraulic event.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno