Ayuda
Ir al contenido

Dialnet


Upscaling mixing-limited chemical reactions from pore to continuum scale using the dispersive lamella concept

  • Autores: Lazaro Jorge Pérez Fonseca
  • Directores de la Tesis: Marco Dentz (dir. tes.), Juan José Hidalgo González (codir. tes.), Maarten Willem Saaltink (tut. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Daniel Fernández García (presid.), Joaquín Jiménez Martínez (secret.), Linda Luquot (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería del Terreno por la Universidad Politécnica de Catalunya
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Reactive transport modeling is an important tool for the analysis of coupled physical, chemical, and biological processes in Earth systems. Observed reactive transport in heterogeneous porous media shows a different behavior than the established transport laws for homogeneous media. Natural aquifers exhibit physical and chemical heterogeneities at all scales, which leads to reaction and transport dynamics that cannot be explained by traditional reactive models based on the advection-dispersion-reaction equation (ADRE). In particular, the discrepancy is traced back to the nonuniform nature of flow velocity fields, complex spatial concentration distributions, and the degree of mixing between reactants. The role and contribution of these factors is key to provide accurate predictions of reactions. The complexity of the task lies in the enormous range of spatial and temporal scales that reactants find in natural porous media. Hence, the complete characterization of the fate of chemical reactions requires that models accounts for the basic mechanisms that govern the mixing and reaction dynamics. In this thesis, we present a novel methodology for the simulation of homogeneous chemical reactions. The proposed methodology is a random walk particle tracking approach (RWPT) coupled with reactions that simulates bimolecular chemical reactions, and is equivalent to the ADRE. Reactions among particles are determined by a reaction probability given in terms of the reaction rate coefficient, the total number of particles, and an interaction radius that describes a well-mixed support volume at which all particles have the same probability to react. The method is meshless and free of numerical dispersion. The RWPT approach is validated against analytical solutions for different flow scenarios under slow and fast reaction kinetics. We focus on the impact of the mixing degree between chemical species and its role in the global reaction behavior. We first consider a reactive displacement in a Poiseuille flow through a pore channel, this system allow us to quantify the impact of the interaction of interface deformation and diffusion on mixing and reactive transport. We observe overestimation of the global reaction efficiency by the use of the Taylor dispersion coefficient at preasymptotic times, when the system is characterized by incomplete mixing. Next, we observe features of incomplete mixing in a synthetic porous medium. Results show that macroscopic predictions using the hydrodynamic dispersion coefficient overestimates the amount of reaction. In addition, we analize the bimolecular reactive transport in a laboratory experiment, where we find that the amount of reaction is affected by the amount of mixing due to difusion, the amount of mixing due to spreading and the degree of heterogeneity of the flow field. The contributions of these factors induces that ADRE estimation of the total reaction product fails.

      In order to characterize incomplete mixing and provide an explicit relation between fluid deformation and its impact on the temporal evolution of the chemical reactivity, we develop the dispersive lamella approach based on the concept of effective dispersion which accurately predicts the full evolution of the product mass. Specifically, the approach captures the impact of interface deformation and diffusive coalescence. Using this methodology, we quantify the impact of flow heterogeneities on the amount of fluid mixing in a pore channel, where we observe three temporal regimes based on the production rate of the product mass. In addition, the dispersive lamella predictions capture the kinetics of the reaction in a synthetic porous medium. Results reveal that reaction behavior is controlled by the interface front between the two reactants. In the pore-scale experimental visualization, the dispersive lamella show that reaction is controlled by the deformed mixing interface at early times, and for fingering coalescence at late times.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno