Ayuda
Ir al contenido

Dialnet


Gait recognition from multiple view-points

  • Autores: Francisco Manuel Castro Payán
  • Directores de la Tesis: Nicolás Guil Mata (dir. tes.), Manuel J. Marín Jiménez (codir. tes.)
  • Lectura: En la Universidad de Málaga ( España ) en 2018
  • Idioma: español
  • Tribunal Calificador de la Tesis: Oscar Plata González (presid.), Julián Fiérrez Aguilar (secret.), Grégory Rogez (voc.)
  • Programa de doctorado: Programa de Doctorado en Tecnologías Informáticas por la Universidad de Málaga
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RIUMA
  • Resumen
    • La identificación automática de personas está ganando mucha importancia en los últimos años ya que se puede aplicar en entornos que deben ser seguros (aeropuertos, centrales nucleares, etc) para agilizar todos los procesos de acceso. La mayoría de soluciones desarrolladas para este problema se basan en un amplio abanico de características físicas de los sujetos, como pueden ser el iris, la huella dactilar o la cara. Sin embargo, este tipo de técnicas tienen una serie de limitaciones ya que requieren la colaboración por parte del sujeto a identificar o bien son muy sensibles a cambios en la apariencia. Sin embargo, el reconocimiento del paso es una forma no invasiva de implementar estos controles de seguridad y, adicionalmente, no necesita la colaboración del sujeto. Además, es robusto frente a cambios en la apariencia del individuo ya que se centra en el movimiento.

      El objetivo principal de esta tesis es desarrollar un nuevo método para la identificación de personas a partir de la forma de caminar en entornos de múltiples vistas. Como entrada usamos el flujo óptico que proporciona una información muy rica sobre el movimiento del sujeto mientras camina. Para cumplir este objetivo, se han desarrollado dos técnicas diferentes: una basada en un enfoque tradicional de visión por computador donde se extraen manualmente características que definen al sujeto y, una segunda aproximación basada en aprendizaje profundo (deep learning) donde el propio método extrae sus características y las clasifica automáticamente. Además, para este último enfoque, se ha desarrollado una implementación basada en aprendizaje incremental para añadir nuevas clases sin entrenar el modelo desde cero y, un estudio energético para optimizar el consumo de energía durante el entrenamiento.

      A la finalización de la tesis, la principal conclusión que se extrae es que la forma de andar permite identificar a las personas con una buena precisión (superior al 90 por ciento y llegando al 99 por ciento en determinados casos). Centrándonos en los diferentes enfoques desarrollados, el método basado en características extraídas a mano está especialmente indicado para bases de datos pequeñas en cuanto a número de muestras, ya que obtiene una buena precisión necesitando pocos datos de entrenamiento. Por otro lado, la aproximación basada en deep learning permite obtener buenos resultados para bases de datos grandes con la ventaja de que el tamaño de entrada puede ser muy pequeño, permitiendo una ejecución muy rápida. El enfoque incremental está especialmente indicado para entornos en los que se requieran añadir nuevos sujetos al sistema sin tener que entrenar el método de nuevo debido a los altos costes de tiempo y energía. Por último, el estudio de consumo nos ha permitido definir una serie de recomendaciones para poder minimizar el consumo de energía durante el entrenamiento de las redes profundas sin penalizar la precisión de las mismas.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno