Ayuda
Ir al contenido

Dialnet


Resumen de Design of a shape memory alloy actuator for soft wearable robots

Álvaro Villoslada Peciña

  • Soft robotics represents a paradigm shift in the design of conventional robots; while the latter are designed as monolithic structures, made of rigid materials and normally composed of several stiff joints, the design of soft robots is based on the use of deformable materials such as polymers, fluids or gels, resulting in a biomimetic design that replicates the behavior of organic tissues. The introduction of this design philosophy into the field of wearable robots has transformed them from rigid and cumbersome devices into something we could call exo-suits or exo-musculatures: motorized, lightweight and comfortable clothing-like devices.

    If one thinks of the ideal soft wearable robot (exoskeleton) as a piece of clothing in which the actuation system is fully integrated into its fabrics, we consider that that existing technologies currently used in the design of these devices do not fully satisfy this premise. Ultimately, these actuation systems are based on conventional technologies such as DC motors or pneumatic actuators, which due to their volume and weight, prevent a seamless integration into the structure of the soft exoskeleton.

    The aim of this thesis is, therefore, to design of an actuator that represents an alternative to the technologies currently used in the field of soft wearable robotics, after having determined the need for an actuator for soft exoskeletons that is compact, flexible and lightweight, while also being able to produce the force required to move the limbs of a human user. Since conventional actuation technologies do not allow the design of an actuator with the required characteristics, the proposed actuator design has been based on so-called emerging actuation technologies, more specifically, on shape memory alloys (SMA).

    The mechanical design of the actuator is based on the Bowden transmission system. The SMA wire used as the transducer of the actuator has been routed into a flexible sheath, which, in addition to being easily adaptable to the user's body, increases the actuation bandwidth by reducing the cooling time of the SMA element by 30 \%. At its nominal operating regime, the actuator provides an output displacement of 24 mm and generates a force of 64 N.

    Along with the actuator, a thermomechanical model of its SMA transducer has been developed to simulate its complex behavior. The developed model is a useful tool in the design process of future SMA-based applications, accelerating development time and reducing costs. The model shows very few discrepancies with respect to the behavior of a real wire. In addition, the model simulates characteristic phenomena of these alloys such as thermal hysteresis, including internal hysteresis loops and return-point memory, the dependence between transformation temperatures and applied force, or the effects of latent heat of transformation on the wire heating and cooling processes.

    To control the actuator, the use of a non-linear control technique called four-term bilinear proportional-integral-derivative controller (BPID) is proposed. The BPID controller compensates the non-linear behavior of the actuator caused by the thermal hysteresis of the SMA. Compared to the operation of two other implemented controllers, the BPID controller offers a very stable and robust performance, minimizing steady-state errors and without the appearance of limit cycles or other effects associated with the control of these alloys.

    To demonstrate that the proposed actuator together with the BPID controller are a valid solution for implementing the actuation system of a soft exoskeleton, both developments have been integrated into a real soft hand exoskeleton, designed to provide force assistance to astronauts. In this case, in addition to using the BPID controller to control the position of the actuators, it has been applied to the control of the assistive force provided by the exoskeleton. Through a simple mechanical multiplication mechanism, the actuator generates a linear displacement of 54 mm and a force of 31 N, thus fulfilling the design requirements imposed by the application of the exoskeleton. Regarding the control of the device, the BPID controller is a valid control technique to control both the position and the force of a soft exoskeleton using an actuation system based on the actuator proposed in this thesis.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus