Ayuda
Ir al contenido

Dialnet


Resumen de Silicon consumption by marine sponges: an empirical approach and its ecological implications

Maria Lopez Acosta

  • Silicon (Si), in its dissolved form of silicic acid (DSi), is a key nutrient in the ocean. The availability of such nutrient in marine ecosystems is regulated through its use by silica-secreting organisms, a variety of groups including protists, algae, and animals that consume DSi to build their silica (BSi) skeletons. The interest in determining how Si cycles in the ocean is high, since it interacts with the cycling of other major nutrients and ocean primary productivity. Because diatoms are the most abundant Si users, the scientific attempts to quantify the Si utilization in the ocean have been only focused on these organisms, considering negligible the role of other Si users. Over the last decades, some studies have suggested that at least another group, the siliceous sponges, are also playing a non-negligible role in the consumption of Si in marine ecosystems.

    Marine sponges are conspicuous animals in benthic ecosystems. They are common across the world ocean, irrespective of the latitude and depth, being able to form enormous aggregations that may extend over large areas. Both their ubiquity and their abundance make sponges good candidates to develop relevant functional roles in marine ecosystems. Regarding the use of Si, it is surprising that, despite about 80% of the sponge species require from DSi to elaborate their skeleton, almost no information is available about how sponges consume such nutrient. In fact, before the beginning of this PhD, only few studies had investigated DSi consumption in marine sponges, with kinetic models available for only four species in two genera of demosponges. This lack of knowledge sparked this PhD. Thus, the main objective of the work was to improve the general understanding on how sponges utilize DSi, to facilitate further assessment of the quantitative role of the sponges as Si users.

    Here we investigated the kinetics of DSi consumption in five sponge species: four temperate, shallow-water demosponges and, for the first time, a cold, deep-water hexactinellid sponge. We also examined the sources of between-species and between-individual variability in DSi consumption responses. Interestingly, we detected that DSi consumption kinetics can change seasonally in some species, what may have important implications when quantifying the role of sponges as Si users. Additionally, we determined for the first time the rate of DSi utilization by a sponge species in situ. The results significantly matched those estimated from the kinetic models obtained in the laboratory, supporting the use of long (>24h) incubations in laboratory to investigate DSi consumption kinetics in sponges, in contrast to the very short periods traditionally recommended for diatoms (< 3h). Finally, we used the empirically information gained on DSi consumption over the development of this PhD to estimate the utilization of DSi by a sponge assemblage at the ecosystem level, using as case study the bay of Brest (France).

    In summary, this research showed that sponges have a noticeable role as Si users, even in a shallow-water ecosystem (the bay of Brest) where diatoms largely contribute to the phytoplankton biomass. Our results also indicated that sponges increase their role in marine ecosystems with increasing availability of DSi in seawater. Thus, sponges are predicted to play a relevant role as Si users in high-latitude and deep-water habitats, characterized by high DSi availability. All together, the siliceous sponges should be considered as Si users if we aim to accurately quantify the cycling of Si in marine ecosystems.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus