Ayuda
Ir al contenido

Dialnet


Development of a reproducible and optimized synthetic protocol for the preparation of monodisperse core-shell-type magnetic mesoporous silica nanoparticles

  • Autores: Santiago Sánchez Cabezas
  • Directores de la Tesis: Vicent Esteve-Moya (dir. tes.), Félix Sancenón Galarza (dir. tes.), Ramón Martínez Máñez (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Jesús Martínez de la Fuente (presid.), Javier Garcia Martinez (secret.), Laurent Bonneviot (voc.)
  • Programa de doctorado: Programa de Doctorado en Química por la Universitat de València (Estudi General) y la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The fabrication of nanoparticles with sizes below 100 nm has opened the door to the development of innovative nanodevices that directly interact with living systems at the cellular and molecular level, becoming an essential part of nanomedicine. One of the main challenges that nanoparticle engineering is currently facing is the design of nanodevices with well-defined physico-chemical properties, which ultimately determine the fate and function of these systems inside the organism. Similarly, the development of reproducible and versatile synthetic protocols is of great importance for manufacture purposes, a fundamental requirement for an efficient translation of this technology into the clinic.

      The main objective of this PhD thesis is the study and fabrication of core-shell-type magnetic mesoporous silica nanoparticles (M-MSNs) for their application as theranostic nanodevices in the field of nanomedicine. A comprehensive study about the synthesis and characterization of this type of nanomaterials is presented with the aim of obtaining core-shell M-MSNs with well-defined physico-chemical properties in a robust and reproducible way. The fabrication of such particles would provide a versatile and reliable platform for the development of more complex nanodevices with advanced functionalities.

      The thesis has been structured into several chapters that are briefly summarized as follows: ¿Chapter 1 is an introduction to the topic of nanomedicine, highlighting the importance of nanoparticles in the development of new biomedical applications. Mesoporous silica nanoparticles are then introduced, showing the great versatility that this nanomaterials offer for the development of theranostic nanodevices and smart drug delivery systems. Finally, the development of nanodevices with well-defined physico-chemical properties is identified as a crucial requirement for overcoming biological barriers and facilitate the translation of nanomedicines from the bench to bedside.

      ¿Chapter 2 presents the aims of this thesis and the specific objectives that are addressed in the following chapters.

      ¿Chapter 3 is devoted to the synthesis and characterization of ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs), which are later used as magnetic seeds for the synthesis of core-shell M-MSNs. USPIONs are prepared through a simple coprecipitation method using mild reaction conditions. The obtained nanoparticles are fully characterized and their magnetic properties are analyzed focusing on magnetic hyperthermia and dual MR imaging applications.

      ¿Chapter 4 is a comprehensive study about the preparation of monodisperse core-shell M-MSNs. The main concepts related to the synthesis and formation mechanisms of this type of nanomaterials are revised, together with the reaction parameters that are expected to have a major contribution on the reaction. As a starting point, a general synthetic protocol for the synthesis of core-shell M-MSNs is presented. Then, specific reaction parameters are investigated in order to understand their effect on the physico-chemical properties of the obtained nanoparticles. The application of a semi-empirical model to the optimization stage is presented in an attempt to provide an adequate reference framework to understand the formation of this complex nanodevices.

      ¿Chapter 5 presents a detailed analysis about the characterization of mesoporous silica materials and, in particular, the assessment of the mesoporous structure of MSNs with a radial distribution of wormhole-like channels. The effects that specific reaction parameters have on the mesoporous silica structure of core-shell M-MSNs are also analysed, providing additional information about the formation of this type of nanoparticles.

      ¿Chapter 6 gathers the main conclusions of this thesis.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno