Ayuda
Ir al contenido

Dialnet


Inter-individual physiological variation in the nematode caenorhabditis elegans

  • Autores: Marcos Francisco Perez
  • Directores de la Tesis: Benjamin Lehner (dir. tes.)
  • Lectura: En la Universitat Pompeu Fabra ( España ) en 2018
  • Idioma: español
  • Tribunal Calificador de la Tesis: Rene Ketting (presid.), Nicholas Edward Stroustrup (secret.), Christian Brändle (voc.)
  • Programa de doctorado: Programa de Doctorado en Biomedicina por la Universidad Pompeu Fabra
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • La predicción de los rasgos fenotípicos de los individuos, basándose en el conocimiento de la genoma personal, es un proceso clave en el desarrollo de la medicina personalizada. Pero para poder predecir la salud y la fisiología de los individuos, también hace falta conocer los límites predictivas de la secuenciación genómica, y que otros factores, ambientales y ancestrales, pueden influir la salud del individuo.

      El nematodo Caenorhabditis elegans es un organismo modelo importante en la biomedicina, debido a su ciclo de vida corto, su transparencia, su fácil cultivación y al desarrollo y la bioquímica conservado entre estos gusanos y los humanos. Los gusanos hermafroditas producen progenie genéticamente idéntica, y por tanto se hace posible el estudio de la variación fisiológica restante en poblaciones grandes de individuos que son idénticos genéticamente. El propósito el tesis es desentrañar las causas de la variación fisiológico en poblaciones isogénicas, para mejor predecir la fisiología individual.

      El tesis tiene tres partes. En la introducción, se encuentra un resumen de las maneras y los mecanismos por los cuales el ambiente experimentado por los padres de un individuo puede influir su fisiología. También se encuentra una introducción al complejo lipoproteínico que resulta ser muy importante en la generación de la variación fisiológica observada en C. elegans, la vitelogenina o yema.

      En la segunda parte, se encuentran los resultados experimentales del estudio. Descubrí que una causa muy importante de la variación fisiológica entre individuos se debe a la edad de la madre de un individuo, siendo los hijos de las madres más jóvenes peor en muchos respetos y durante toda su vida, cómo la velocidad del desarrollo y la fecundidad. El mecanismo es un aumento con la edad de la madre en la cantidad de vitolegenina, la fuente mayor de nutrientes para el embrión en desarrollo, y por tanto la provisión de nutrientes a los embriones.

      En la tercera parte se habla de las implicaciones de los resultados del estudio.

      Resumen de la tesis:

      Por causas desconocidas, animales idénticos genéticamente suelen variar sustancialmente en sus rasgos fenotípicos, aunque el ambiente en el que habiten sea el mismo. Aquí investigo las causas de variación fisiológica entre individuos utilizando un organismo modelo, el nematodo Caenorhabditis elegans. Nematodos isogénicos varían en su tamaño al nacer, en su velocidad de crecimiento y desarrollo, en su resistencia a la privación de alimento y en su fecundidad. Muestro que muchas de estas variaciones se deben a la edad de la madre del individuo, con las madres jóvenes engendrando a progenie peor en muchos respetos. Para muchos rasgos fenotípicos, el mecanismo molecular subyacente es un aumento progresivo con la edad de la madre de la provisión de un complejo lipoproteínico, yema/vitelogenina, a los embriones. Ecológicamente, es probable que la producción de progenie inferior por parte de las madres jóvenes esté compensada por la ventaja opuesta de tener un tiempo generacional corto. Los resultados presentados destacan los cambios en la provisión maternal de recursos a los embriones como una fuente significativa de variación fenotípica a lo largo de la vida de un animal.

      Bibliografía de la tesis:

      Ackerman D, Gems D, The mystery of C. elegans aging: an emerging role for fat. Bioessays 34, 466-471 (2012).

      Alberti KGM, Zimmet P, Shaw J, The metabolic syndrome—a new worldwide definition. The Lancet 366, 1059-1062 (2005).

      Alcazar RM, Lin R, Fire AZ, Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180, 1275-1288 (2008).

      Ali R, Gooding M, Szilágyi T, Vojnovic B, Christlieb M, Brady M, Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images. Machine Vision and Applications, 1-15 (2012).

      Almond D, Mazumder BA, Health capital and the prenatal environment: the effect of Ramadan observance during pregnancy. American Economic Journal: Applied Economics 3, 56-85 (2011).

      Ambros V, Horvitz H, Heterochronic mutants of the nematode. Science 226, 409-416 (1984).

      Amdam GV, Simões ZL, Hagen A, Norberg K, Schrøder K, Mikkelsen Ø, Kirkwood TB, Omholt SW, Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Experimental Gerontology 39, 767-773 (2004).

      An JH, Blackwell TK, SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes & Development 17, 1882-1893 (2003).

      Andersen EC, Bloom JS, Gerke JP, Kruglyak L, A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genetics 10, e1004156 (2014).

      Anderson LM, Riffle L, Wilson R, Travlos GS, Lubomirski MS, Alvord WG, Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22, 327-331 (2006).

      Artyukhin AB, Schroeder FC, Avery L, Density dependence in Caenorhabditis larval starvation. Scientific Reports 3, 2777 (2013).

      Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, Cobimetinib combined with vemurafenib in advanced BRAF V600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. The Lancet Oncology 17, 1248-1260 (2016).

      Auroux M, Nawar N, Naguib M, Baud M, Lapaquellerie N, Post-pubescent to mature fathers: increase in progeny quality? Human Reproduction 13, 55-59 (1998).

      Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF, Insect seminal fluid proteins: identification and function. Annual Review of Entomology 56, 21-40 (2011).

      Baker ME, Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochemical Journal 256, 1059 (1988a).

      Baker ME, Is vitellogenin an ancestor of apolipoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase? Biochemical Journal 255, 1057-1060 (1988b).

      Balestra FR, Von Tobel L, Gönczy P, Paternally contributed centrioles exhibit exceptional persistence in C. elegans embryos. Cell Research 25, 642 (2015).

      Balhorn R, The protamine family of sperm nuclear proteins. Genome Biology 8, 227 (2007).

      Balklava Z, Rathnakumar ND, Vashist S, Schweinsberg PJ, Grant BD, Linking gene expression in the intestine to production of gametes through the phosphate transporter PITR-1 in Caenorhabditis elegans. Genetics 204, 153-162 (2016).

      Bartel DP, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).

      Baugh LR, To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics 194, 539-555 (2013).

      Baugh LR, Sternberg PW, DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Current Biology 16, 780-785 (2006).

      Baumeister R, Schaffitzel E, Hertweck M, Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. Journal of Endocrinology 190, 191-202 (2006).

      Behl M, Rao D, Aagaard K, Davidson TL, Levin ED, Slotkin TA, Srinivasan S, Wallinga D, White MF, Walker VR, Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a national toxicology program workshop review. Environmental Health Perspectives 121, 170 (2013).

      Benton T, St Clair J, Plaistow S, Maternal effects mediated by maternal age: from life histories to population dynamics. Journal of Animal Ecology 77, 1038-1046 (2008).

      Bentov Y, Yavorska T, Esfandiari N, Jurisicova A, Casper RF, The contribution of mitochondrial function to reproductive aging. Journal of Assisted Reproduction and Genetics 28, 773-783 (2011). Bentz AB, Becker DJ, Navara KJ, Evolutionary implications of interspecific variation in a maternal effect: a meta-analysis of yolk testosterone response to competition. Royal Society Open Science 3, 160499 (2016).

      Berger SL, The complex language of chromatin regulation during transcription. Nature 447, 407-412 (2007).

      Berkeley SA, Chapman C, Sogard SM, Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258-1264 (2004).

      Berman JR, Kenyon C, Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124, 1055-1068 (2006).

      Berry LW, Westlund B, Schedl T, Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925-936 (1997).

      Billi A, Fischer S, Kim J, Endogenous RNAi pathways in C. elegans. Wormbook (2014).

      Blagosklonny MV, Answering the ultimate question “what is the proximal cause of aging?”. Aging 4, 861-877 (2012).

      Blumenthal T, Squire M, Kirtland S, Cane J, Donegan M, Spieth J, Sharrock W, Cloning of a yolk protein gene family from Caenorhabditis elegans. Journal of Molecular Biology 174, 1-18 (1984).

      Bogaert AF, Skorska M, Sexual orientation, fraternal birth order, and the maternal immune hypothesis: A review. Frontiers in Neuroendocrinology 32, 247-254 (2011).

      Bonduriansky R, Runagall‐McNaull A, Crean AJ, The nutritional geometry of parental effects: maternal and paternal macronutrient consumption and offspring phenotype in a neriid fly. Functional Ecology, (2016).

      Bossinger O, Schierenberg E, The use of fluorescent marker dyes for studying intercellular communication in nematode embryos. International Journal of Developmental Biology 40, 431-439 (2003).

      Boucher B, Ewen SW, Stowers J, Betel nut (Areca catechu) consumption and the induction of glucose intolerance in adult CD1 mice and in their F1 and F2 offspring. Diabetologia 37, 49-55 (1994).

      Brawand D, Wahli W, Kaessmann H, Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS biology 6, e63 (2008).

      Brenner S, The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).

      Brenner S, Nobel lecture: nature's gift to science. Bioscience reports 23, 225-237 (2003).

      Bromfield JJ, Schjenken JE, Chin PY, Care AS, Jasper MJ, Robertson SA, Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proceedings of the National Academy of Sciences 111, 2200-2205 (2014).

      Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H, Kimble J, Fire A, Kennedy S, A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447-451 (2012).

      Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B, Inherited microdeletions in the Angelman and Prader–Willi syndromes define an imprinting centre on human chromosome 15. Nature genetics 9, 395-400 (1995).

      Burga A, Lehner B, Predicting phenotypic variation from genotypes, phenotypes and a combination of the two. Current Opinion in Biotechnology 24, 803-809 (2013).

      Burton NO, Furuta T, Webster AK, Kaplan RE, Baugh LR, Arur S, Horvitz HR, Insulin-like signalling to the maternal germline controls progeny response to osmotic stress. Nature Cell Biology, (2017).

      Burton T, Robertsen G, Stewart DC, McKelvey S, Armstrong JD, Metcalfe NB, Maternal age at maturation underpins contrasting behavior in offspring. Behavioral Ecology 27, 1280-1287 (2016).

      Butcher RA, Small-molecule pheromones and hormones controlling nematode development. Nature Chemical Biology 13, 577-586 (2017).

      Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT, Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65, 1265-1280 (2006).

      Capowski EE, Martin P, Garvin C, Strome S, Identification of grandchildless loci whose products are required for normal germ-line development in the nematode Caenorhabditis elegans. Genetics 129, 1061-1072 (1991).

      Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM, CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7, R100 (2006).

      Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA, Cardiometabolic differences in children born after in vitro fertilization: follow-up study. The Journal of Clinical Endocrinology & Metabolism 93, 1682-1688 (2008).

      Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM, Unlocking the secrets of the genome. Nature 459, 927-930 (2009).

      Chen M, Wu L, Zhao J, Wu F, Davies MJ, Wittert GA, Norman RJ, Robker RL, Heilbronn LK, Altered glucose metabolism in mouse and humans conceived by IVF. Diabetes 63, 3189-3198 (2014).

      Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng G-h, Peng H, Zhang X, Zhang Y, Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397-400 (2016a).

      Chen Q, Yan W, Duan E, Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nature Reviews Genetics 17, 733-743 (2016b).

      Chen X-K, Wen SW, Fleming N, Demissie K, Rhoads GG, Walker M, Teenage pregnancy and adverse birth outcomes: a large population based retrospective cohort study. International Journal of Epidemiology 36, 368-373 (2007).

      Chen X-K, Wen SW, Krewski D, Fleming N, Yang Q, Walker MC, Paternal age and adverse birth outcomes: teenager or 40+, who is at risk? Human Reproduction 23, 1290-1296 (2008).

      Chikina MD, Huttenhower C, Murphy CT, Troyanskaya OG, Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Computational Biology 5, e1000417 (2009).

      Chotard L, Skorobogata O, Sylvain MA, Shrivastava S, Rocheleau CE, TBC-2 is required for embryonic yolk protein storage and larval survival during L1 diapause in Caenorhabditis elegans. PloS one 5, e15662 (2010).

      Coburn C, Gems D, The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic acid and the kynurenine pathway. Frontiers in Genetics 4, 151 (2013).

      Collins FS, Medical and societal consequences of the Human Genome Project. New England Journal of Medicine 341, 28-37 (1999).

      Crean AJ, Bonduriansky R, What is a paternal effect? Trends in Ecology & Evolution 29, 554-559 (2014).

      Cui M, Han M, Roles of chromatin factors in C. elegans development. Wormbook (2007).

      Curley JP, Mashoodh R, Champagne FA, Epigenetics and the origins of paternal effects. Hormones and Behavior 59, 306-314 (2011).

      Cutter AD, Pitnick S, Sperm-limited fecundity in nematodes: how many sperm are enough? Evolution 58, 651-655 (2004).

      Demoinet E, Li S, Roy R, AMPK blocks starvation-inducible transgenerational defects in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 201616171 (2017).

      DePina AS, Iser WB, Park SS, Maudsley S, Wilson MA, Wolkow CA, Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms. BMC Physiology 11, 11 (2011).

      Depuydt G, Xie F, Petyuk VA, Shanmugam N, Smolders A, Dhondt I, Brewer HM, Camp DG, Smith RD, Braeckman BP, Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans. Molecular & Cellular Proteomics 12, 3624-3639 (2013).

      Dey S, Proulx SR, Teotonio H, Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLoS Biology 14, e1002388 (2016).

      Dias BG, Ressler KJ, Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience 17, 89-96 (2014).

      Dickinson DJ, Pani AM, Heppert JK, Higgins CD, Goldstein B, Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200, 1035-1049 (2015).

      Dietz DM, LaPlant Q, Watts EL, Hodes GE, Russo SJ, Feng J, Oosting RS, Vialou V, Nestler EJ, Paternal transmission of stress-induced pathologies. Biological Psychiatry 70, 408-414 (2011).

      Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, Fulford AJ, Guan Y, Laritsky E, Silver MJ, Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nature Communications 5, (2014).

      Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, Mortensen B, Appel EVR, Jørgensen N, Kristiansen VB, Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metabolism 23, 369-378 (2016).

      Dowen RH, Breen PC, Tullius T, Conery AL, Ruvkun G, A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport. Genes & Development 30, 1515-1528 (2016).

      Duchaine TF, Wohlschlegel JA, Kennedy S, Bei Y, Conte D, Pang K, Brownell DR, Harding S, Mitani S, Ruvkun G, Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343-354 (2006).

      Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T, Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proceedings of the National Academy of Sciences 85, 5992-5996 (1988).

      Duveau F, Félix M-A, Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biology 10, e1001230 (2012).

      Ehmke M, Luthe K, Schnabel R, Döring F, S-Adenosyl methionine synthetase 1 limits fat storage in Caenorhabditis elegans. Genes & Nutrition 9, 1-14 (2014).

      Falchuk KH, The molecular basis for the role of zinc in developmental biology. Molecular and Cellular Effects of Nutrition on Disease Processes. (Springer, 1998), pp. 41-48.

      Félix M-A, Braendle C, The natural history of Caenorhabditis elegans. Current Biology 20, R965-R969 (2010). Félix M-A, Duveau F, Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biology 10, 59 (2012).

      Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, Piane LD, Kolahi K, Ameri K, Maltepe E, Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155, 1956-1969 (2014).

      Figueroa-Colon R, Arani RB, Goran MI, Weinsier RL, Paternal body fat is a longitudinal predictor of changes in body fat in premenarcheal girls. The American Journal of Clinical Nutrition 71, 829-834 (2000).

      Fischer M, Fitzenberger E, Kull R, Boll M, Wenzel U, The zinc matrix metalloproteinase ZMP-2 increases survival of Caenorhabditis elegans through interference with lipoprotein absorption. Genes & Nutrition 9, 1-10 (2014).

      Fischer M, Regitz C, Kahl M, Werthebach M, Boll M, Wenzel U, Phytoestrogens genistein and daidzein affect immunity in the nematode Caenorhabditis elegans via alterations of vitellogenin expression. Molecular Nutrition & Food Research 56, 957-965 (2012).

      Fischer M, Regitz C, Kull R, Boll M, Wenzel U, Vitellogenins increase stress resistance of Caenorhabditis elegans after Photorhabdus luminescens infection depending on the steroid-signaling pathway. Microbes and Infection 15, 569-578 (2013).

      Fish EW, Shahrokh D, Bagot R, Caldji C, Bredy T, Szyf M, Meaney MJ, Epigenetic programming of stress responses through variations in maternal care. Annals of the New York Academy of Sciences 1036, 167-180 (2004).

      Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A, Zangeneh M, Lau L, Virtanen C, Wang S-C, Intra-and interindividual epigenetic variation in human germ cells. The American Journal of Human Genetics 79, 67-84 (2006).

      Fouad AD, Pu SH, Teng S, Mark JR, Fu M, Zhang K, Huang J, Raizen DM, Fang-Yen C, Quantitative assessment of fat levels in Caenorhabditis elegans using dark field microscopy. G3 7, 1811-1818 (2017).

      Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences 102, 10604-10609 (2005).

      Francesconi M, Lehner B, The effects of genetic variation on gene expression dynamics during development. Nature 505, 208-211 (2014).

      Frazier HN, Roth MB, Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments. Current Biology 19, 859-863 (2009). Fukuyama M, Kontani K, Katada T, Rougvie AE, The C. elegans hypodermis couples progenitor cell quiescence to the dietary state. Current Biology 25, 1241-1248 (2015).

      Fukuyama M, Rougvie AE, Rothman JH, C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Current Biology 16, 773-779 (2006).

      Fukuyama M, Sakuma K, Park R, Kasuga H, Nagaya R, Atsumi Y, Shimomura Y, Takahashi S, Kajiho H, Rougvie A, C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biology Open 1, 929-936 (2012).

      Fullston T, Teague EMCO, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Owens JA, Lane M, Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. The FASEB Journal 27, 4226-4243 (2013).

      Garbutt JS, Little TJ, Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecology and Evolution 7, 1403-1409 (2017).

      Gärtner K, A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Laboratory Animals 24, 71-77 (1990).

      Gatalica Z, Vranic S, Xiu J, Swensen J, Reddy S, High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. Familial Cancer 15, 405-412 (2016).

      Geiler-Samerotte K, Bauer C, Li S, Ziv N, Gresham D, Siegal M, The details in the distributions: why and how to study phenotypic variability. Current Opinion in Biotechnology 24, 752-759 (2013).

      Gems D, de la Guardia Y, Alternative perspectives on aging in Caenorhabditis elegans: reactive oxygen species or hyperfunction? Antioxidants & Redox Signaling 19, 321-329 (2013).

      Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL, Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129-155 (1998).

      Ghosh P, Thomas P, Binding of metals to red drum vitellogenin and incorporation into oocytes. Marine Environmental Research 39, 165-168 (1995).

      Goszczynski B, Captan VV, Danielson AM, Lancaster BR, McGhee JD, A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-beta/Sma/Mab pathway. Developmental Biology 413, 112-127 (2016).

      Grandjean V, Fourré S, De Abreu DAF, Derieppe M-A, Remy J-J, Rassoulzadegan M, RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Scientific Reports 5, srep18193 (2015).

      Grant B, Hirsh D, Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Molecular Biology of the Cell 10, 4311-4326 (1999).

      Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu C-H, Aravind L, He C, Shi Y, DNA methylation on N 6-adenine in C. elegans. Cell 161, 868-878 (2015).

      Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A, Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365-371 (2011).

      Grindler NM, Moley KH, Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. MHR: Basic Science of Reproductive Medicine 19, 486-494 (2013).

      Grishok A, and Mechanisms of Short RNAs in Caenorhabditis elegans. Advances in Genetics 83, 1 (2013).

      Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC, Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23-34 (2001).

      Groothuis TG, Müller W, von Engelhardt N, Carere C, Eising C, Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience & Biobehavioral Reviews 29, 329-352 (2005).

      Gubelmann C, Gattiker A, Massouras A, Hens K, David F, Decouttere F, Rougemont J, Deplancke B, GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR. Database : the Journal of Biological Databases and Curation 2011, bar040 (2011).

      Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Omholt S, Simões ZL, Hartfelder K, Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Letters 579, 4961-4965 (2005).

      Gumienny TL, MacNeil L, Zimmerman CM, Wang H, Chin L, Wrana JL, Padgett RW, Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling. PLoS Genetics 6, e1000963 (2010).

      Gumienny TL, Savage-Dunn C, TGF-β signaling in C. elegans. WormBook (2013).

      Hales CN, Barker DJ, Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595-601 (1992).

      Hales CN, Barker DJ, The thrifty phenotype hypothesis. British Medical Bulletin 60, 5-20 (2001).

      Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D, Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Developmental Biology 212, 101-123 (1999a).

      Hall M, Wang R, van Antwerpen R, Sottrup-Jensen L, Söderhäll K, The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Proceedings of the National Academy of Sciences 96, 1965-1970 (1999b).

      Hardie DG, Ross FA, Hawley SA, AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular cell biology 13, 251-262 (2012).

      Harvey SC, Orbidans HE, All eggs are not equal: the maternal environment affects progeny reproduction and developmental fate in Caenorhabditis elegans. PloS one 6, e25840 (2011).

      Hastie T, Stuetzle W, Principal curves. Journal of the American Statistical Association 84, 502-516 (1989).

      Hedgecock EM, White JG, Polyploid tissues in the nematode Caenorhabditis elegans. Developmental Biology 107, 128-133 (1985).

      Hegedus AM, Alterman AI, Tarter RE, Learning achievement in sons of alcoholics. Alcoholism: Clinical and Experimental Research 8, 330-333 (1984).

      Henderson IR, Jacobsen SE, Epigenetic inheritance in plants. Nature 447, 418 (2007).

      Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M, Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814 (2002).

      Hertweck M, Göbel C, Baumeister R, C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Developmental Cell 6, 577-588 (2004).

      Hibshman JD, Hung A, Baugh LR, Maternal Diet and Insulin-Like Signaling Control Intergenerational Plasticity of Progeny Size and Starvation Resistance. PLoS Genetics 12, e1006396 (2016).

      Hirsh D, Oppenheim D, Klass M, Development of the reproductive system of Caenorhabditis elegans. Developmental Biology 49, 200-219 (1976).

      Hobert O, Maintaining a memory by transcriptional autoregulation. Current Biology 21, R146-R147 (2011).

      Honnen SJ, Büchter C, Schröder V, Hoffmann M, Kohara Y, Kampkötter A, Bossinger O, C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling. PloS one 7, e32183 (2012).

      Houri-Ze’evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O, A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165, 88-99 (2016).

      Hu PJ, Dauer. WormBook (2007).

      Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J, Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PloS one 5, e10074 (2010).

      Iwasaki K, Mcearter J, Francis R, Schedl T, emo-Sec61p, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. The Journal of Cell Biology 134, 699-714 (1996).

      Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN, Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biology 6, 1122 (2004).

      Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR, Otis JP, Chow A, Diaz R, Ferguson-Smith A, Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460-468 (2009).

      Jobson MA, Jordan JM, Sandrof MA, Hibshman JD, Lennox AL, Baugh LR, Transgenerational effects of early life starvation on growth, reproduction, and stress resistance in Caenorhabditis elegans. Genetics 201, 201-212 (2015).

      Johnson TE, Mitchell DH, Kline S, Kemal R, Foy J, Arresting development arrests aging in the nematode Caenorhabditis elegans. Mechanisms of Ageing and Development 28, 23-40 (1984).

      Jones KT, Greer ER, Pearce D, Ashrafi K, Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biology 7, e1000060 (2009).

      Joyner MJ, Paneth N, Ioannidis JP, What happens when underperforming big ideas in research become entrenched? Jama 316, 1355-1356 (2016).

      Jung J, Nakajima M, Kojima M, Ooe K, Fukuda T, Microchip device for measurement of body volume of C. elegans as bioindicator application. Journal of Micro-Nano Mechatronics 7, 3-11 (2012).

      Jurisicova A, Taniuchi A, Li H, Shang Y, Antenos M, Detmar J, Xu J, Matikainen T, Hernández AB, Nunez G, Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri. The Journal of Clinical Investigation 117, 3971 (2007).

      Kamath RS, Ahringer J, Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313-321 (2003). Kang C, You Y-j, Avery L, Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes & Development 21, 2161-2171 (2007).

      Kaplan F, Srinivasan J, Mahanti P, Ajredini R, Durak O, Nimalendran R, Sternberg PW, Teal PE, Schroeder FC, Edison AS, Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage. PloS one 6, e17804 (2011).

      Kennedy BP, Aamodt EJ, Allen FL, Chung MA, Heschl MF, McGhee JD, The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Journal of Molecular Biology 229, 890-908 (1993).

      Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R, A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464 (1993).

      Khanna A, Johnson DL, Curran SP, Physiological roles for mafr-1 in reproduction and lipid homeostasis. Cell Reports 9, 2180-2191 (2014).

      Killian DJ, Hubbard EJA, Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Developmental Biology 279, 322-335 (2005).

      Kimble J, Sharrock WJ, Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Developmental Biology 96, 189-196 (1983).

      Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G, daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946 (1997).

      Kindsvater HK, Otto SP, The evolution of offspring size across life-history stages. The American Naturalist 184, 543-555 (2014).

      Kirkwood TB, Feder M, Finch CE, Franceschi C, Globerson A, Klingenberg CP, LaMarco K, Omholt S, Westendorp RG, What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mechanisms of Ageing and Development 126, 439-443 (2005).

      Klapper M, Ehmke M, Palgunow D, Bohme M, Matthaus C, Bergner G, Dietzek B, Popp J, Doring F, Fluorescence-based fixative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and flow cytometry approaches. Journal of Lipid Research 52, 1281-1293 (2011).

      Kleijkers SH, Eijssen LM, Coonen E, Derhaag JG, Mantikou E, Jonker MJ, Mastenbroek S, Repping S, Evers JL, Dumoulin JC, Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Human Reproduction 30, 2303-2311 (2015).

      Kleijkers SH, van Montfoort AP, Smits LJ, Viechtbauer W, Roseboom TJ, Nelissen EC, Coonen E, Derhaag JG, Bastings L, Schreurs IE, IVF culture medium affects post-natal weight in humans during the first 2 years of life. Human Reproduction 29, 661-669 (2014).

      Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B, Transgenerational transmission of environmental information in C. elegans. Science 356, 320-323 (2017).

      Klosin A, Lehner B, Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals. Current Opinion in Genetics & Development 36, 41-49 (2016).

      Kubagawa HM, Watts JL, Corrigan C, Edmonds JW, Sztul E, Browse J, Miller MA, Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nature Cell Biology 8, 1143-1148 (2006).

      Kuo Y, Hsu T-Y, Wu Y-C, Chang H-C, Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34, 8352-8360 (2013).

      Kurzchalia TV, Ward S, Why do worms need cholesterol? Nature Cell Biology 5, 684-688 (2003).

      Laakso J, Setälä H, Population-and ecosystem-level effects of predation on microbial-feeding nematodes. Oecologia 120, 279-286 (1999).

      LaMunyon CW, Ward S, Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proceedings of the Royal Society of London B: Biological Sciences 265, 1997-2002 (1998).

      Lane M, Robker RL, Robertson SA, Parenting from before conception. Science 345, 756-760 (2014).

      Le Tourneau C, Delord J-P, Gonçalves A, Gavoille C, Dubot C, Isambert N, Campone M, Trédan O, Massiani M-A, Mauborgne C, Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. The Lancet Oncology 16, 1324-1334 (2015).

      Ledig M, Misslin R, Kopp P, Vogel E, Tholey G, Mandel P, Alcohol exposure before pregnancy: biochemical and behavioral effects on the offspring of rats. Pharmacology Biochemistry and Behavior 36, 279-285 (1990).

      Ledig M, Misslin R, Vogel E, Holownia A, Copin J, Tholey G, Paternal alcohol exposure: developmental and behavioral effects on the offspring of rats. Neuropharmacology 37, 57-66 (1998).

      Lee I, Hendrix A, Kim J, Yoshimoto J, You YJ, Metabolic rate regulates L1 longevity in C. elegans. PloS one 7, e44720 (2012).

      Lee K-M, Ward MH, Han S, Ahn HS, Kang HJ, Choi HS, Shin HY, Koo H-H, Seo J-J, Choi J-E, Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leukemia Research 33, 250-258 (2009).

      Li F, Lok JB, Gasser RB, Korhonen PK, Sandeman MR, Shi D, Zhou R, Li X, Zhou Y, Zhao J, Hc-daf-2 encodes an insulin-like receptor kinase in the barber’s pole worm, Haemonchus contortus, and restores partial dauer regulation. International Journal for Parasitology 44, 485-496 (2014).

      Li Z, Zhang S, Zhang J, Liu M, Liu Z, Vitellogenin is a cidal factor capable of killing bacteria via interaction with lipopolysaccharide and lipoteichoic acid. Molecular Immunology 46, 3232-3239 (2009).

      Liang J, Lints R, Foehr ML, Tokarz R, Yu L, Emmons SW, Liu J, Savage-Dunn C, The Caenorhabditis elegans schnurri homolog sma-9 mediates stage-and cell type-specific responses to DBL-1 BMP-related signaling. Development 130, 6453-6464 (2003).

      Liang V, Ullrich M, Lam H, Chew YL, Banister S, Song X, Zaw T, Kassiou M, Götz J, Nicholas HR, Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cellular and Molecular Life Sciences 71, 3339-3361 (2014).

      Libina N, Berman JR, Kenyon C, Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489-502 (2003).

      Lionaki E, Tavernarakis N, Assessing aging and senescent decline in Caenorhabditis elegans: cohort survival analysis. Methods in Molecular Biology 965, 473-484 (2013).

      Little RE, Mother's and father's birthweight as predictors of infant birthweight. Paediatric and Perinatal Epidemiology 1, 19-31 (1987).

      Liu Q-H, Zhang S-C, Li Z-J, Gao C-R, Characterization of a pattern recognition molecule vitellogenin from carp (Cyprinus carpio). Immunobiology 214, 257-267 (2009).

      Ludewig AH, Gimond C, Judkins JC, Thornton S, Pulido DC, Micikas RJ, Döring F, Antebi A, Braendle C, Schroeder FC, Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genetics 13, e1006717 (2017).

      Lundström S, Haworth C, Carlström E, Gillberg C, Mill J, Råstam M, Hultman CM, Ronald A, Anckarsäter H, Plomin R, Trajectories leading to autism spectrum disorders are affected by paternal age: findings from two nationally representative twin studies. Journal of Child Psychology and Psychiatry 51, 850-856 (2010).

      Lung O, Kuo L, Wolfner M, Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. Journal of Insect Physiology 47, 617-622 (2001).

      Luo G-Z, He C, DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander? Nature Structural & Molecular Biology 24, 503-506 (2017).

      Luo S, Kleemann GA, Ashraf JM, Shaw WM, Murphy CT, TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 143, 299-312 (2010).

      Lynn DA, Dalton HM, Sowa JN, Wang MC, Soukas AA, Curran SP, Omega-3 and-6 fatty acids allocate somatic and germline lipids to ensure fitness during nutrient and oxidative stress in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 112, 15378-15383 (2015).

      MacMorris M, Broverman S, Greenspoon S, Lea K, Madej C, Blumenthal T, Spieth J, Regulation of vitellogenin gene expression in transgenic Caenorhabditis elegans: short sequences required for activation of the vit-2 promoter. Molecular and Cellular Biology 12, 1652-1662 (1992).

      MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ, Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252 (2013).

      Maduzia LL, Gumienny TL, Zimmerman CM, Wang H, Shetgiri P, Krishna S, Roberts AF, Padgett RW, lon-1 regulates Caenorhabditis elegans body size downstream of the dbl-1 TGFβ signaling pathway. Developmental Biology 246, 418-428 (2002).

      Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, Susser ES, Advancing paternal age and the risk of schizophrenia. Archives of General Psychiatry 58, 361-367 (2001).

      Malaspina D, Reichenberg A, Weiser M, Fennig S, Davidson M, Harlap S, Wolitzky R, Rabinowitz J, Susser E, Knobler HY, Paternal age and intelligence: implications for age-related genomic changes in male germ cells. Psychiatric Genetics 15, 117-125 (2005).

      Marré J, Traver EC, Jose AM, Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 201608959 (2016).

      Marshall DJ, Heppell SS, Munch SB, Warner RR, The relationship between maternal phenotype and offspring quality: do older mothers really produce the best offspring? Ecology 91, 2862-2873 (2010).

      Marshall DJ, Uller T, When is a maternal effect adaptive? Oikos 116, 1957-1963 (2007).

      Mashoodh R, Franks B, Curley JP, Champagne FA, Paternal social enrichment effects on maternal behavior and offspring growth. Proceedings of the National Academy of Sciences 109, 17232-17238 (2012).

      Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FR, Kurzchalia TV, Distribution and transport of cholesterol in Caenorhabditis elegans. Molecular Biology of the Cell 12, 1725-1736 (2001).

      Maures TJ, Booth LN, Benayoun BA, Izrayelit Y, Schroeder FC, Brunet A, Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343, 541-544 (2014).

      McGee MD, Weber D, Day N, Vitelli C, Crippen D, Herndon LA, Hall DH, Melov S, Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10, 699-710 (2011).

      McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA, The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Developmental Biology 302, 627-645 (2007).

      McIntyre G, Gooding R, Effects of maternal age on larval competitiveness in house flies. Heredity 85, 480-489 (2000).

      McPherson NO, Bell VG, Zander-Fox D, Fullston T, Wu LL, Robker RL, Lane M, When two obese parents are worse than one! Impacts on embryo and fetal development. American Journal of Physiology-Endocrinology and Metabolism 309, E568-E581 (2015).

      Meek LR, Myren K, Sturm J, Burau D, Acute paternal alcohol use affects offspring development and adult behavior. Physiology & Behavior 91, 154-160 (2007).

      Miersch C, Döring F, Paternal dietary restriction affects progeny fat content in Caenorhabditis elegans. IUBMB Life 64, 644-648 (2012).

      Miska EA, Ferguson-Smith AC, Transgenerational inheritance: Models and mechanisms of non–DNA sequence–based inheritance. Science 354, 59-63 (2016).

      Mitchell M, Carlisle A, Plasma zinc as an index of vitellogenin production and reproductive status in the domestic fowl. Comparative Biochemistry and Physiology Part A: Physiology 100, 719-724 (1991).

      Mok DZL, Sternberg PW, Inoue T, Morphologically defined sub-stages of C. elegans vulval development in the fourth larval stage. BMC Developmental Biology 15, 26 (2015).

      Morley JF, Brignull HR, Weyers JJ, Morimoto RI, The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 99, 10417-10422 (2002).

      Murphy CT, The search for DAF-16/FOXO transcriptional targets: approaches and discoveries. Experimental Gerontology 41, 910-921 (2006).

      Murphy CT, Hu PJ, Insulin/insulin-like growth factor signaling in C. elegans. Wormbook (2005).

      Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C, Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283 (2003).

      Nagaoka SI, Hassold TJ, Hunt PA, Human aneuploidy: mechanisms and new insights into an age-old problem. Nature Reviews Genetics 13, 493-504 (2012).

      Nakamura A, Yasuda K, Adachi H, Sakurai Y, Ishii N, Goto S, Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochemical and Biophysical Research Communications 264, 580-583 (1999).

      Narasimhan SD, Yen K, Tissenbaum HA, Converging pathways in lifespan regulation. Current Biology 19, R657-R666 (2009).

      Nardelli D, Gerber-Huber S, Gruber M, Ab G, Wahli W, Vertebrate and nematode genes coding for yolk proteins are derived from a common ancestor. Biochemistry 26, 6397-6402 (1987).

      Navara K, Siefferman L, Hill G, Mendonca M, Yolk androgens vary inversely to maternal androgens in eastern bluebirds: an experimental study. Functional Ecology 20, 449-456 (2006).

      Nelson CM, Ihle KE, Fondrk MK, Page Jr RE, Amdam GV, The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biology 5, e62 (2007).

      Nicholas LM, Rattanatray L, Morrison JL, Kleemann DO, Walker SK, Zhang S, MacLaughlin S, McMillen IC, Maternal obesity or weight loss around conception impacts hepatic fatty acid metabolism in the offspring. Obesity 22, 1685-1693 (2014).

      Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, Tissenbaum HA, Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature Genetics 38, 251-257 (2006).

      Oliveira RP, Abate JP, Dilks K, Landis J, Ashraf J, Murphy CT, Blackwell TK, Condition‐adapted stress and longevity gene regulation by Caenorhabditis elegans SKN‐1/Nrf. Aging Cell 8, 524-541 (2009).

      Öst A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352-1364 (2014).

      Painter RC, Roseboom TJ, Bleker OP, Prenatal exposure to the Dutch famine and disease in later life: an overview. Reproductive Toxicology 20, 345-352 (2005).

      Palgunow D, Klapper M, Döring F, Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PloS one 7, e46198 (2012).

      Palmisano NJ, Meléndez A, Detection of autophagy in Caenorhabditis elegans using GFP:: LGG-1 as an autophagy marker. Cold Spring Harbor Protocols 2016, pdb. prot086496 (2016).

      Pang S, Curran SP, Adaptive capacity to bacterial diet modulates aging in C. elegans. Cell Metabolism 19, 221-231 (2014).

      Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW, Cheptou PO, Conner JK, Goldberg EE, Grant AG, Grossenbacher DL, The scope of Baker's law. New Phytologist 208, 656-667 (2015).

      Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, Golding J, Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics 14, 159-166 (2006).

      Persson A, Gross E, Laurent P, Busch KE, Bretes H, de Bono M, Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature 458, 1030-1033 (2009).

      Petersen A, The ethics of expectations. Monash Bioethics Review 28, 22-33 (2009).

      Piulachs M, Guidugli K, Barchuk A, Cruz J, Simoes Z, Belles X, The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect Biochemistry and Molecular Biology 33, 459-465 (2003).

      Plaistow SJ, St. Clair JJ, Grant J, Benton TG, How to put all your eggs in one basket: empirical patterns of offspring provisioning throughout a mother’s lifetime. The American Naturalist 170, 520-529 (2007).

      Poullet N, Vielle A, Gimond C, Carvalho S, Teotónio H, Braendle C, Complex heterochrony underlies the evolution of Caenorhabditis elegans hermaphrodite sex allocation. Evolution 70, 2357-2369 (2016).

      Pradhan A, Hammerquist AM, Khanna A, Curran SP, The C-Box region of MAF1 regulates transcriptional activity and protein stability. Journal of Molecular Biology 429, 192-207 (2017).

      Prasad V, Perspective: The precision-oncology illusion. Nature 537, S63-S63 (2016).

      Ptashne M, A genetic switch: Gene control and phage lambda. (1986).

      Ptashne M, Epigenetics: core misconcept. Proceedings of the National Academy of Sciences 110, 7101-7103 (2013).

      Qi W, Yan Y, Pfeifer D, Donner v Gromoff E, Wang Y, Maier W, Baumeister R, C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation. PLoS Genetics 13, e1006801 (2017).

      Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA, Reik W, Erkek S, In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

      Raikhel AS, Dhadialla T, Accumulation of yolk proteins in insect oocytes. Annual Review of Entomology 37, 217-251 (1992).

      Ramakrishnan K, Ray P, Okkema PG, CEH-28 activates dbl-1 expression and TGF-β signaling in the C. elegans M4 neuron. Developmental Biology 390, 149-159 (2014).

      Rando OJ, Daddy issues: paternal effects on phenotype. Cell 151, 702-708 (2012).

      Rando OJ, Simmons RA, I’m eating for two: parental dietary effects on offspring metabolism. Cell 161, 93-105 (2015).

      Rattanatray L, MacLaughlin S, Kleemann D, Walker S, Muhlhausler B, McMillen I, Impact of maternal periconceptional overnutrition on fat mass and expression of adipogenic and lipogenic genes in visceral and subcutaneous fat depots in the postnatal lamb. Endocrinology 151, 5195-5205 (2010).

      Rea SL, Ventura N, Johnson TE, Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS biology 5, e259 (2007).

      Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O, Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277-287 (2014).

      Reik W, Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425-432 (2007).

      Reinke V, San Gil I, Ward S, Kazmer K, Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131, 311-323 (2004).

      Rexhaj E, Paoloni-Giacobino A, Rimoldi SF, Fuster DG, Anderegg M, Somm E, Bouillet E, Allemann Y, Sartori C, Scherrer U, Mice generated by in vitro fertilization exhibit vascular dysfunction and shortened life span. The Journal of Clinical Investigation 123, 5052 (2013).

      Reznick D, Callahan H, Llauredo R, Maternal effects on offspring quality in poeciliid fishes. American Zoologist 36, 147-156 (1996).

      Rich SS, Diabetes: Still a geneticist's nightmare. Nature 536, 37-38 (2016).

      Robertson SA, Seminal plasma and male factor signalling in the female reproductive tract. Cell and Tissue Research 322, 43-52 (2005).

      Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK, TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metabolism 15, 713-724 (2012).

      Rockman MV, Skrovanek SS, Kruglyak L, Selection at linked sites shapes heritable phenotypic variation in C. elegans. Science 330, 372-376 (2010).

      Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL, Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. Journal of Neuroscience 33, 9003-9012 (2013).

      Rodgers AB, Morgan CP, Leu NA, Bale TL, Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proceedings of the National Academy of Sciences 112, 13699-13704 (2015).

      Rodriguez-Mozaz S, de Alda MJL, Marco M-P, Barceló D, Biosensors for environmental monitoring: A global perspective. Talanta 65, 291-297 (2005).

      Rollinson N, Rowe L, The positive correlation between maternal size and offspring size: fitting pieces of a life‐history puzzle. Biological Reviews 91, 1134-1148 (2016).

      Romano M, Rosanova P, Anteo C, Limatola E, Vertebrate yolk proteins: a review. Molecular Reproduction and Development 69, 109-116 (2004).

      Roux AE, Langhans K, Huynh W, Kenyon C, Reversible age-related phenotypes induced during larval quiescence in C. elegans. Cell Metabolism 23, 1113-1126 (2016).

      Roy SG, Hansen IA, Raikhel AS, Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology 37, 1317-1326 (2007).

      Sakai S, Harada Y, Why do large mothers produce large offspring? Theory and a test. The American Naturalist 157, 348-359 (2001).

      Salmela H, Vitellogenin in inflammation and immunity in social insects. Inflammation and Cell Signaling 4, (2017).

      Salmela H, Amdam GV, Freitak D, Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathogens 11, e1005015 (2015).

      Salmela H, Stark T, Stucki D, Fuchs S, Freitak D, Dey A, Kent CF, Zayed A, Dhaygude K, Hokkanen H, Ancient duplications have led to functional divergence of vitellogenin-like genes potentially involved in inflammation and oxidative stress in honey bees. Genome Biology and Evolution 8, 495-506 (2016).

      Samuel BS, Rowedder H, Braendle C, Félix M-A, Ruvkun G, Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences 113, E3941-E3949 (2016).

      Sappington TW, Raikhel AS, Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochemistry and Molecular Biology 28, 277-300 (1998).

      Sarbassov DD, Ali SM, Kim D-H, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM, Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology 14, 1296-1302 (2004).

      Sarkies P, Ashe A, Le Pen J, McKie MA, Miska EA, Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Research 23, 1258-1270 (2013).

      Sarkies P, Miska EA, Small RNAs break out: the molecular cell biology of mobile small RNAs. Nature Reviews Molecular Cell Biology 15, 525-535 (2014).

      Sato M, Sato K, Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1833, 1979-1984 (2013).

      Savage-Dunn C, Tokarz R, Wang H, Cohen S, Giannikas C, Padgett RW, SMA-3 smad has specific and critical functions in DBL-1/SMA-6 TGFβ-related signaling. Developmental Biology 223, 70-76 (2000).

      Savage C, Das P, Finelli AL, Townsend SR, Sun C-Y, Baird SE, Padgett RW, Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proceedings of the National Academy of Sciences 93, 790-794 (1996).

      Scherrer U, Rimoldi SF, Rexhaj E, Stuber T, Duplain H, Garcin S, de Marchi SF, Nicod P, Germond M, Allemann Y, Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation 125, 1890-1896 (2012).

      Schott D, Yanai I, Hunter CP, Natural RNA interference directs a heritable response to the environment. Scientific Reports 4, (2014).

      Schulenburg H, Félix M-A, The Natural Biotic Environment of Caenorhabditis elegans. Genetics 206, 55-86 (2017).

      Schuster A, Skinner MK, Yan W, Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environmental Epigenetics 2, (2016).

      Schuster E, McElwee JJ, Tullet JM, Doonan R, Matthijssens F, Reece‐Hoyes JS, Hope IA, Vanfleteren JR, Thornton JM, Gems D, DamID in C. elegans reveals longevity‐associated targets of DAF‐16/FoxO. Molecular Systems Biology 6, 399 (2010).

      Seah NE, de Magalhaes Filho CD, Petrashen AP, Henderson HR, Laguer J, Gonzalez J, Dillin A, Hansen M, Lapierre LR, Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12, 261-272 (2016).

      Seehuus S-C, Norberg K, Gimsa U, Krekling T, Amdam GV, Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proceedings of the National Academy 103, 962-967 (2006).

      Seidel HS, Ailion M, Li J, van Oudenaarden A, Rockman MV, Kruglyak L, A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans. PLoS Biology 9, e1001115 (2011).

      Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391-396 (2016).

      Sharma U, Rando OJ, Metabolic inputs into the epigenome. Cell Metabolism 25, 544-558 (2017).

      Sharrock W, Sutherlin ME, Leske K, Cheng TK, Kim T, Two distinct yolk lipoprotein complexes from Caenorhabditis elegans. Journal of Biological Chemistry 265, 14422-14431 (1990).

      Sharrock WJ, Yolk proteins of Caenorhabditis elegans. Developmental Biology 96, 182-188 (1983).

      Sharrock WJ, Cleavage of two yolk proteins from a precursor in Caenorhabditis elegans. Journal of Molecular Biology 174, 419-431 (1984).

      Shea JM, Serra RW, Carone BR, Shulha HP, Kucukural A, Ziller MJ, Vallaster MP, Gu H, Tapper AR, Gardner PD, Genetic and epigenetic variation, but not diet, shape the sperm methylome. Developmental Cell 35, 750-758 (2015).

      Shen MM, Hodgkin J, mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell 54, 1019-1031 (1988).

      Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME, Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 11, 510 (2010).

      Shi C, Murphy CT, Mating induces shrinking and death in Caenorhabditis mothers. Science 343, 536-540 (2014).

      Shi C, Runnels AM, Murphy CT, Mating and male pheromone kill Caenorhabditis males through distinct mechanisms. eLife 6, e23493 (2017).

      Shi X, Zhang S, Pang Q, Vitellogenin is a novel player in defense reactions. Fish & Shellfish Immunology 20, 769-772 (2006).

      Shim YH, Chun JH, Lee EY, Paik YK, Role of cholesterol in germ‐line development of Caenorhabditis elegans. Molecular Reproduction and Development 61, 358-366 (2002).

      Shin-i T, Kohara Y, NEXTDB: the expression pattern map database for C. elegans. Genome Informatics 9, 224-225 (1998).

      Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H, Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222-226 (2013).

      Simpson VJ, Johnson TE, Hammen RF, Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Research 14, 6711-6719 (1986).

      Skinner MK, What is an epigenetic transgenerational phenotype?: F3 or F2. Reproductive Toxicology 25, 2-6 (2008).

      Skipper JK, Hamilton TH, Regulation by estrogen of the vitellogenin gene. Proceedings of the National Academy of Sciences 74, 2384-2388 (1977).

      Smith CC, Fretwell SD, The optimal balance between size and number of offspring. The American Naturalist 108, 499-506 (1974).

      Song S, Wang W, Hu P, Famine, death, and madness: schizophrenia in early adulthood after prenatal exposure to the Chinese Great Leap Forward Famine. Social Science & Medicine 68, 1315-1321 (2009).

      Sonnenblick A, De Azambuja E, Azim Jr HA, Piccart M, An update on PARP inhibitors [mdash] moving to the adjuvant setting. Nature Reviews Clinical Oncology 12, 27-41 (2015).

      Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A, Kurtzberg J, Jirtle RL, Murphy SK, Hoyo C, Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Medicine 11, 29 (2013).

      Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G, Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes & Development 23, 496-511 (2009).

      Spencer WC, Zeller G, Watson JD, Henz SR, Watkins KL, McWhirter RD, Petersen S, Sreedharan VT, Widmer C, Jo J, A spatial and temporal map of C. elegans gene expression. Genome Research 21, 325-341 (2011).

      Spieth J, Blumenthal T, The Caenorhabditis elegans vitellogenin gene family includes a gene encoding a distantly related protein. Molecular and Cellular Biology 5, 2495-2501 (1985).

      Spieth J, Denison K, Kirtland S, Cane J, Blumenthal T, The C. elegans vitellogenin genes: short sequence repeats in the promoter regions and homology to the vertebrate genes. Nucleic Acids Research 13, 5283-5295 (1985).

      Spieth J, MacMorris M, Broverman S, Greenspoon S, Blumenthal T, Regulated expression of a vitellogenin fusion gene in transgenic nematodes. Developmental Biology 130, 285-293 (1988).

      Spieth J, Nettleton M, Zucker-Aprison E, Lea K, Blumenthal T, Vitellogenin motifs conserved in nematodes and vertebrates. Journal of Molecular Evolution 32, 429-438 (1991).

      Spudich JL, Koshland Jr DE, Non-genetic individuality: chance in the single cell. Nature 262, 467-471 (1976).

      Stanner SA, Bulmer K, Andres C, Lantseva OE, Borodina V, Poteen V, Yudkin JS, Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. British Medical Journal 315, 1342-1348 (1997).

      Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Mazzeo LEM, Dreyfuss JM, Hourihan JM, Raghavan P, Operaña TN, Esmaillie R, Blackwell TK, Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife 4, e07836 (2015).

      Sterken MG, Snoek LB, Kammenga JE, Andersen EC, The laboratory domestication of Caenorhabditis elegans. Trends in Genetics 31, 224-231 (2015).

      Stiernagle T, Maintenance of C. elegans. Wormbook (1999).

      Sulston JE, Horvitz HR, Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology 56, 110-156 (1977).

      Sun C, Zhang S, Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish. Nutrients 7, 8818-8829 (2015).

      Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D, Gorman JM, Schizophrenia after prenatal famine: further evidence. Archives of General Psychiatry 53, 25-31 (1996).

      Suzuki Y, Yandell MD, Roy PJ, Krishna S, Savage-Dunn C, Ross RM, Padgett RW, Wood WB, A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in Caenorhabditis elegans. Development 126, 241-250 (1999).

      Tajbakhsh S, Gonzalez C, Biased segregation of DNA and centrosomes—moving together or drifting apart? Nature Reviews Molecular Cell Biology 10, 804-810 (2009).

      Tarter RE, Hegedus AM, Goldstein G, Shelly C, Alterman AI, Adolescent sons of alcoholics: Neuropsychological and personality characteristics. Alcoholism: Clinical and Experimental Research 8, 216-222 (1984).

      Tatar M, Bartke A, Antebi A, The endocrine regulation of aging by insulin-like signals. Science 299, 1346-1351 (2003).

      ten Dijke P, Hill CS, New insights into TGF-β–Smad signalling. Trends in Biochemical Sciences 29, 265-273 (2004).

      Tepper RG, Ashraf J, Kaletsky R, Kleemann G, Murphy CT, Bussemaker HJ, PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity. Cell 154, 676-690 (2013).

      Tian X, Anthony K, Neuberger T, Diaz FJ, Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice. Biology of Reproduction 90, 83, 81-12 (2014).

      Tian X, Diaz F, Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Developmental Biology 376, 51-61 (2013).

      Tong Z, Li L, Pawar R, Zhang S, Vitellogenin is an acute phase protein with bacterial-binding and inhibiting activities. Immunobiology 215, 898-902 (2010).

      Tony H, Chen H, Chiu Y-H, Boucher BJ, Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. The American Journal of Clinical Nutrition 83, 688-692 (2006).

      Triggs AM, Knell RJ, Parental diet has strong transgenerational effects on offspring immunity. Functional Ecology 26, 1409-1417 (2012).

      Tufail M, Nagaba Y, Elgendy AM, Takeda M, Regulation of vitellogenin genes in insects. Entomological Science 17, 269-282 (2014).

      Tufail M, Takeda M, Molecular characteristics of insect vitellogenins. Journal of Insect Physiology 54, 1447-1458 (2008).

      Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK, Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025-1038 (2008).

      Uusi-Heikkilä S, Kuparinen A, Wolter C, Meinelt T, Arlinghaus R, Paternal body size affects reproductive success in laboratory-held zebrafish (Danio rerio). Environmental Biology of Fishes 93, 461-474 (2012).

      Valtonen TM, Kangassalo K, Pölkki M, Rantala MJ, Transgenerational effects of parental larval diet on offspring development time, adult body size and pathogen resistance in Drosophila melanogaster. PloS one 7, e31611 (2012).

      Van Nostrand EL, Sánchez-Blanco A, Wu B, Nguyen A, Kim SK, Roles of the developmental regulator unc-62/Homothorax in limiting longevity in Caenorhabditis elegans. PLoS Genetics 9, e1003325 (2013).

      Van Rompay L, Borghgraef C, Beets I, Caers J, Temmerman L, New genetic regulators question relevance of abundant yolk protein production in C. elegans. Scientific Reports 5, 16381 (2015).

      Van Voorhies WA, Fuchs J, Thomas S, The longevity of Caenorhabditis elegans in soil. Biology Letters 1, 247-249 (2005).

      Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, Research0034 (2002).

      Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC, Epigenetic inheritance of a cocaine-resistance phenotype. Nature Neuroscience 16, 42-47 (2013).

      Vella MC, Slack FJ, C. elegans microRNAs. Wormbook (2005).

      Vrablik TL, Petyuk VA, Larson EM, Smith RD, Watts JL, Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1851, 1337-1345 (2015).

      Wahlby C, Kamentsky L, Liu ZH, Riklin-Raviv T, Conery AL, O'Rourke EJ, Sokolnicki KL, Visvikis O, Ljosa V, Irazoqui JE, Golland P, Ruvkun G, Ausubel FM, Carpenter AE, An image analysis toolbox for high-throughput C. elegans assays. Nature Methods 9, 714-716 (2012).

      Wakschlag LS, Pickett KE, Cook Jr E, Benowitz NL, Leventhal BL, Maternal smoking during pregnancy and severe antisocial behavior in offspring: a review. American Journal of Public Health 92, 966-974 (2002).

      Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840-852 (2011).

      Wang H, Jiang X, Wu J, Zhang L, Huang J, Zhang Y, Zou X, Liang B, Iron overload coordinately promotes ferritin expression and fat accumulation in Caenorhabditis elegans. Genetics 203, 241-253 (2016).

      Wang J, Tokarz R, Savage-Dunn C, The expression of TGFβ signal transducers in the hypodermis regulates body size in C. elegans. Development 129, 4989-4998 (2002).

      Warner DA, Lovern MB, The maternal environment affects offspring viability via an indirect effect of yolk investment on offspring size. Physiological and Biochemical Zoology 87, 276-287 (2014).

      Waterland RA, Jirtle RL, Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology 23, 5293-5300 (2003).

      Watkins AJ, Lucas ES, Wilkins A, Cagampang FR, Fleming TP, Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age. PloS one 6, e28745 (2011).

      Watson E, MacNeil LT, Ritter AD, Yilmaz LS, Rosebrock AP, Caudy AA, Walhout AJ, Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759-770 (2014).

      Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ, Epigenetic programming by maternal behavior. Nature Neuroscience 7, 847-854 (2004).

      Wharam B, Weldon L, Viney M, Pheromone modulates two phenotypically plastic traits–adult reproduction and larval diapause–in the nematode Caenorhabditis elegans. BMC Evolutionary Biology 17, 197 (2017).

      Wheeler MW, Park RM, Bailer AJ, Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environmental Toxicology and Chemistry 25, 1441-1444 (2006).

      Williams CL, Teeling JL, Perry VH, Fleming TP, Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring. BMC Biology 9, 49 (2011).

      Wong AH, Gottesman II, Petronis A, Phenotypic differences in genetically identical organisms: the epigenetic perspective. Human Molecular Genetics 14, R11-R18 (2005).

      Wong C, Lee K, Lo K, Chan O, Goggins W, Chow P, Ablation of paternal accessory sex glands imparts physical and behavioural abnormalities to the progeny: an in vivo study in the golden hamster. Theriogenology 68, 654-662 (2007).

      Wong WS, Solomon BD, Bodian DL, Kothiyal P, Eley G, Huddleston KC, Baker R, Thach DC, Iyer RK, Vockley JG, New observations on maternal age effect on germline de novo mutations. Nature Communications 7, (2016).

      Wood AJ, Oakey RJ, Genomic imprinting in mammals: emerging themes and established theories. PLoS Genetics 2, e147 (2006).

      Wu LL, Russell DL, Wong SL, Chen M, Tsai T-S, St John JC, Norman RJ, Febbraio MA, Carroll J, Robker RL, Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142, 681-691 (2015).

      Wullschleger S, Loewith R, Hall MN, TOR signaling in growth and metabolism. Cell 124, 471-484 (2006).

      Xiao R, Chun L, Ronan EA, Friedman DI, Liu J, Xu XZ, RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C. elegans. Cell reports 11, 1123-1133 (2015).

      Yauk CL, Berndt ML, Williams A, Rowan-Carroll A, Douglas GR, Stämpfli MR, Mainstream tobacco smoke causes paternal germ-line DNA mutation. Cancer Research 67, 5103-5106 (2007).

      Yen TT, Gill A, Frigeri L, Barsh G, Wolff G, Obesity, diabetes, and neoplasia in yellow A (vy)/-mice: ectopic expression of the agouti gene. The FASEB Journal 8, 479-488 (1994).

      Yi W, Zarkower D, Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans MAB-3 and Drosophila melanogaster DSX suggests conservation of sex determining mechanisms. Development 126, 873-881 (1999).

      Yochem J, Tuck S, Greenwald I, Han M, A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 126, 597-606 (1999).

      Yule MA, Brotto LA, Gorzalka BB, Biological markers of asexuality: Handedness, birth order, and finger length ratios in self-identified asexual men and women. Archives of Sexual Behavior 43, 299-310 (2014).

      Zhang P, Na H, Liu Z, Zhang S, Xue P, Chen Y, Pu J, Peng G, Huang X, Yang F, Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Molecular & Cellular Proteomics 11, 317-328 (2012).

      Zhang S, Sun Y, Pang Q, Shi X, Hemagglutinating and antibacterial activities of vitellogenin. Fish & Shellfish Immunology 19, 93-95 (2005).

      Zucker-Aprison E, Blumenthal T, Potential regulatory elements of nematode vitellogenin genes revealed by interspecies sequence comparison. Journal of Molecular Evolution 28, 487-496 (1989).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno