Ayuda
Ir al contenido

Dialnet


Dielectric charge control in contactless capacitive mems

  • Autores: Sergio Gorreta Mariné
  • Directores de la Tesis: Manuel Domínguez Pumar (dir. tes.), Joan Pons Nin (codir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: Lluis Pradell Cara (presid.), David Molinero Giles (secret.), Miguel Ullan Comes (voc.)
  • Programa de doctorado: Programa Oficial de Doctorado en Ingeniería Electrónica
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Micro-Electro-Mechanical Systems, or MEMS, has been a continuously growing technology during the last decades. Since 1959, when the theoretical physicist Richard Feynman introduced the concept of nanotechnology in his famous talk ¿There is plenty of room at the bottom¿, several companies and researchers have been involved in the permanent improving of these devices. MEMS is the technology of microscopic devices, particularly those with moving parts and it is widely used in both sensing and actuating applications. In this regard, a large number of microsensors for almost every possible sensing modality have been de- veloped, including pressure, inertial forces, chemical species, magnetic fields, etc. Accordingly to this, MEMS can be found today in many real applications across multiple markets, such as automotive, consumer, defense, industrial, medical, telecommunications, etc. The main advantages for the use of MEMS in front of other classical technologies are small size, low cost, high isolation and low power consumption.

      However, there are still some reliability issues hindering the use of MEMS devices in some applications. Mechanical and electrical phenomena involving such micro-scale structures have been matter of study during the last years, being dielectric charging the most important in the case of electrostatically actuated MEMS. The charge accumulated in dielectric layers has a significant impact on the behavior of such devices by altering the electric field distribution in the structure and causing some undesirable effects such as shifts of the Capacitance-Voltage (C-V) characteristic and even permanent stiction of movable mechanical parts, so that the device becomes permanently damaged. Thus, detection and control of dielectric charge are of capital importance due to their strong influence on device performance and reliability.

      In order to face this challenge, in this Thesis dielectric charge phenomena have been studied under bipolar voltage actuation and several different control strategies have been proposed. These control schemes have demonstrated to be useful to set the dielectric charge to a desired level for contactless MEMS such as varactors, electrostatic positioners or microphone MEMS. Furthermore, these methods have provided the first active compensation of charge trapping generated by ionizing radiation in any device.

      The first approach to control trapped charge proposed consisted in alternating voltage polarity, depending on the sampled value of the device capacitance. This method demonstrated the feasibility of compensating horizontal shifts of the C-V by charge injection while paving the way for the second control proposed. For the implementation of this second method, which was later patented worldwide, two voltage waveforms were introduced for both monitoring and controlling the net trapping charge. This method resulted in a true sigma-delta modulator capable of providing control for both signs of net trapped charge.

      Finally, two further methods were proposed which improved the performance of the second control. The first one implemented a second-order sigma-delta control and the last one introduced some modifications in the feedback loop to allow continuous capacitance control while dielectric charge is being also controlled.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno