Ayuda
Ir al contenido

Dialnet


New targets in tumor angiogenesis to block tumor re-growth and therapeutic resistance

  • Autores: Nicklas Bassani
  • Directores de la Tesis: Oriol Casanovas (dir. tes.), Francesc Vinyals Canals (tut. tes.)
  • Lectura: En la Universitat de Barcelona ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Carlos Perales Losa (presid.), Olatz Etxaniz Ulazia (secret.), André Carazza dos Santos (voc.)
  • Programa de doctorado: Programa de Doctorado en Biomedicina por la Universidad de Barcelona
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Abstract Antiangiogenic drugs are used clinically for treatment of different types of cancers and in the case of renal cell carcinoma (RCC) are now standard first-line treatments (Rini, 2009). Nevertheless, these agents mainly serve to stabilize the disease but are not able to eliminate all tumor cells and resistance eventually develops concomitant with progression (Kerber and Folkman, 2002).

      Using different orthoxenograft mouse models of RCC we confirmed that inhibitors of the VEGF pathway have a therapeutic window of effectiveness but unfortunately adaptation and tumor relapse always occur.

      Several different mechanisms of resistance to antiangiogenics have been already described, many concerning the activation of compensatory signals that produce re-vascularization and tumor re-growth. (Bergers and Hanahan, 2008). In our study we determined that even if resistance is characterized by the up-regulation of the pro-angiogenic enzyme ECGF1 (previous data from the lab); re-vascularization does not occur, the vascular trimming is maintained by the treatment pointing to an alternative mode of adaptation.

      Using two different approaches, we demonstrated that PD-ECGF1 is responsible of the acquisition of resistance to anti-anigiogenics. In fact, its enzymatic inhibition as second-line treatment post resistance resulted in the arrest and stabilization of tumor growth. PD-ECGF1 inhibition did not increase the anti-vascular effect of DC101, confirming that resistance was vessel independent, but dramatically affected tumor cell proliferation and apoptosis. Considering the numerous proprieties ascribed to its final metabolite 2-deoxy-D-ribose (Ikeda et al., 2006; Bjinsdorp et al., 2008), we evaluated its role, finding that recombinant 2-deoxy-D-ribose nullified the effect of AEAC on 786O- and Ren28 tumor growth rescuing tumor cell proliferation and apoptosis, without promoting re-vascularization. Overall these findings, confirmed also in an in vitro setting, demonstrate that tumor stroma plays a minor role in this model of anti-angiogenics resistance, and that PD-ECGF1 acts mainly intracellularly supporting tumor cell proliferation and protecting from apoptosis by its enzymatic activity and final metabolite 2-deoxy-D-ribose.

      Using a genetic approach in which PD-ECGF1 protein expression was silence as a second line of treatment post DC101-resistance, mimicking what done pharmacologically, we confirmed and improved the anti-tumoral response described, without perceiving any doxycycline toxic effect. In fact, PD-ECGF1 genetic knock down resulted in a complete arrest of tumor progression enhancing the merely partial stabilization produce by AEAC treatment in 786O- tumor bearing mice.

      Unfortunately VEGFR-blockers can’t be used in vitro on cancer cells, and to verify this hypothesis we decided to mimic the final effects of anti-angiogenic treatments, finding that under nutrient deprivation conditions cancer cells significantly up-regulate PD-ECGF1 expression, and metabolizing thymidine acquired considerable growth advantages.

      Finally, the analysis of plasma and tissue samples of ccRCC patients from the Bellvitge Hospital confirm in a clinical set that PD-ECGF1 is exclusively found in pathologic conditions, where if highly expressed correlates with poor prognosis, suggesting that might represent a good therapeutic predictor factor. Moreover, the analysis of tissues biopsies before and after anti-angiogenic treatment revealed that whilst PD-ECGF1 treatment-induce up-regulation was a common feature, the patients that unfortunately didn’t respond showed the sharp difference, confirming PD-ECGF1 as a possible therapeutic target.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno