Ayuda
Ir al contenido

Dialnet


Multi-level-objective design optimization of permanent magnet synchronous wind generator and solar photovoltaic system for an urban environment application

  • Autores: Pedram Asef
  • Directores de la Tesis: Ramón Bargalló Perpiñá (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Jordi García Amorós (presid.), Balduí Blanqué Molina (secret.), Antonio Mendes (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería Eléctrica por la Universidad Politécnica de Catalunya
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This thesis illustrates a novel study on the analytical and numerical design optimization of radial-flux permanent magnet synchronous wind generators (PMSGs) for small power generation in an urban area, in which an outer rotor topology with a closed-slot stator is employed. The electromagnetic advantages of a double-layer fractional concentration non-overlapping winding configuration are discussed. The analytical behavior of a PMSG is studied in detail; especially for magnetic flux density distribution , time and s pace harmonics, flux linkages, back-EMF, cogging torque, torque, output power, efficiency, and iron losses computation. The electromagnetic behavior of PMSGs are evaluated when a number of various Halbach array magnetization topologies are presented to maximize the generator's performance. In addition, the thermal behavior of the PMSG is improved using an innovative natural air-cooling system for rated speed and higher to decrease the machine's heat mainly at the stator teeth. The analytical investigation is verified via 2-D and 3-D finite element analysis along with a good experimental agreement.

      Design optimization of electrical machines plays the deterministic role in performance improvements such as the magnetization pattern, output power, and efficiency maximization, as well as losses and material cost minimization. This dissertation proposes a novel multi-objective design optimization technique using a dual-level response surface methodology (D-RSM) and Booth's algorithm (coupled to a memetic algorithm known as simulated annealing) to maximize the output power and minimize material cost through sizing optimization . Additionally, the efficiency maximization by D-RSM is investigated while the PMSG and drive system are on duty as the whole. lt is shown that a better fit is available when utilizing functions such as mixed-resolution central composite (MR-CCD) and mixed-resolution robust (MR-RD), due to controllable and uncontrollable design treatments, and also a Window-Zoom-in approach. The proposed design optimization was verified by an experimental investigation. Additionally, there are several novel studies on vibro-acoustic design optimization of the PMSGs with considering variable speed analysis and natural frequencies using two techniques to minimize the magnetic noise and vibrations.

      Photovoltaic system design optimization considered of 3-D modeling of an innovative application-oriented urban environment structure, a smart tree for small power generation. The horizon shading is modeled as a broken line superimposed onto the sun path diagram, which can hold any number of height/azimuth points in this original study. The horizon profile is designed for a specific location on the Barcelona coast in Spain. Furthermore, the input weather data is observed and stored for the whole year (in 2016). These data include, ambient temperature, module's temperature (open and closed circuits tests), and shading average rate. A novel Pareto-based 3-D analysis was used to identify complete and partial shading of the photovoltaic system. A significant parameter for a photovoltaic (PV) module operation is the nominal operating cell temperature (NOCT). In this research, a glass/glass module has been referenced to the environment based on IEC61215 via a closed-circuit and a resistive load to ensure the module operates at the maximum power point. The proposed technique in this comparative study attempts to minimize the losses in a certain area with improved output energy without compromising the overall efficiency of the system . A Maximum Power Point Track (MPPT) controller is enhanced by utilizing an advanced perturb & observe (P&O) algorithm to maintain the PV operating point at its maximum output under different temperatures and insolation. The most cost-effective design of the PV module is achieved via optimizing instal.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno