Ayuda
Ir al contenido

Dialnet


Homomorfismos de grupo e isomorfismos vectoriales entre espacios de funciones continuas

  • Autores: Francisco Gregorio González Martínez
  • Directores de la Tesis: Manuel Sanchís López (dir. tes.)
  • Lectura: En la Universitat Jaume I ( España ) en 2002
  • Idioma: español
  • Número de páginas: 138
  • Tribunal Calificador de la Tesis: José Luis Blasco Olcina (presid.), Juan José Font Ferrandis (secret.), Salvador Hernández Muñoz (voc.), Valentín Gregori Gregori (voc.), Salvador Romaguera Bonilla (voc.)
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • La Memoria Homomorfismos de grupos e isomorfismos vectoriales entre espacios de funciones continuas se enmarcan en el problema de representar los homomorfismos de grupos (respectivamente, aplicaciones lineales) entre espacios de funciones con valores en un grupo (respectivamente, en un espacio vectorial) que dejan invariante un conjunto prefijado, una función o una relación definida en el espacio de funciones. En el capítulo 2 se obtiene una representación de los homomorfismos de grupos entre C(X,^) y C(Y,^) que conservan el rango y de los homomorfismos que conservan el diámetro cuando el espacio X es compacto. En el capítulo 3 se demuestra que las aplicaciones lineales biyectivas entre los espacios de funciones C(X,R) y C(Y,R) que conservan el diámetro son de la forma ***** cuando los espacios X e Y son compactos, y un homeomorfismo.

      En el capítulo 4 demostramos que si X es un subespacio realcompacto y primer numerable de un espacio linealmente ordenado L e Y es un espacio topológico realcompacto, toda biyección lineal separada T: C(X) - C(Y) es biseparadora y puede expresarse como una composición con peso. El último capítulo está dedicado a dos problemas en relación con el concepto de G-espacio: el problema de la compactación y el problema de bajo que condiciones la G-compactación coincide con la compactación de Stone-Cech.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno