Ayuda
Ir al contenido

Dialnet


Methods for characterising patient-specific corneal biomechanics

  • Autores: Miguel Ángel Ariza Gracia
  • Directores de la Tesis: Begoña Calvo Calzada (dir. tes.), José Félix Rodríguez Matas (dir. tes.)
  • Lectura: En la Universidad de Zaragoza ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: Anna Pandolfi (presid.), Miguel Angel Martínez Barca (secret.), María José Rupérez Moreno (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería Biomédica por la Universidad Politécnica de Catalunya y la Universidad de Zaragoza
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • SUMMARY This thesis addresses the problem of generating a patient-specific numerical model of the human cornea, using its patient- specific geometry and mechanical properties. We propose several methods to reconstruct the patient-specific geometry of the cornea in an automatic fashion, as well as different protocols to determine patient-specific material properties of the corneal tissue under different loading conditions. Ocular healthcare has become rapidly important during the last decade, supported by the increment of safety in surgical procedures, and the reduction of associated costs. However, over or un- der corrections after refractive surgeries are still causing certain degree of visual impairment, patient dissatisfaction, and an increment of costs due to secondary surgeries. Furthermore, concern about the underlying biomechanical sources of ectatic diseases, such as Keratoconus, has encouraged the search for a better definition of the mechanical properties of the ocular tissues. In this vein, non-contact tonometers (NCTs), or air-puff devices, have become a reference in Ophthal- mology to perform intrasurgical assessment, or to provide an insight into the mechanical properties of the corneal tissue in pathological and healthy eyes.

      Throughout the course of this dissertation, our contribution to the field of Corneal Biomechanics is presented in different milestones. First, we carry out a theoretical in silico study to better understand the physical grounds of NCTs, the role of different ocular features (intraocular pressure, material stiffness, and geometry), and what these clinical tests really characterize. Second, we develop a novel automatic methodology to reconstruct patient-specific corneal geometries where data is available (provided by commercial topographers), allowing to simulate a general air-puff test. Third, we propose different mathematical techniques to predict patient-specific material properties of the cornea based on clinical biomarkers (maximum displacement in a NCT, intraocular pressure, and corneal geometry), showing the capabilities of numerical methods in helping to assess in clinics. Fourth, we propose a novel numerical-experimental protocol so as to determine the mechanical properties of the corneal tissue using inflation and bending tests. In this way, we try to avoid an ill-posed material optimization by minimizing both stress states simultaneously. Fifth, using the information provided by our patient- specific material protocols, we simulate patient-specific Astigmatic Keratotomy surgeries in animal models (New Zealand Rabbit). To ensure that equivalent optical metrics are used when comparing experimental and numerical data, we have developed, and validated using commercial software, an in-house ray tracing algorithm. Thus, a consistent validation and optimization procedures are carried out. Sixth, as NCTs involve the coupling between fluids (air and humors) and a structure (eyeball), fluid-structure interaction (FSI) simulations are applied to improve NCTs’ simulations, including more realistic load transfers and boundary conditions. Additionally, we study whether FSI simulations are mandatory or under what hypothesis they can be accurately substituted by pure mechanical dynamic simulations.

      REFERENCES M. Abahussin, S. Hayes, N. E. Knox Cartwright, C. S. Kamma-Lorger, Y. Khan, J. Marshall, and K. M. Meek. 3D Collagen Orientation Study of the Human Cornea Using X-ray Diffraction and Femtosecond Laser Technology. Investig. Opthalmology Vis. Sci., 50(11):5159, nov 2009. ISSN 1552-5783. DOI: 10.1167/iovs.09-3669.

      O. Abitbol, J. Bouden, S. Doan, T. Hoang-Xuan, and D. Gatinel. Corneal hysteresis measured with the Ocular Response Ana- lyzer in normal and glaucomatous eyes. Acta Ophthalmol., 88(1):116–119, feb 2010. D O I : 10.1111/j.1755-3768.2009.01554.x.

      P. A. Accardo and S. Pensiero. Neural network-based system for early keratoconus detection from corneal topography. J Biomed Inf., 35(3):151–159, jun 2002. ISSN 15320464. DOI: 10.1016/S1532-0464(02)00513-0.

      A. Agarwal, A. Argawal, and S. Jacob. Texbook on Corneal Topography. Including Pentacam and Anterior Segment OCT. Jaypee Brothers Medical Publishers (P) Ltd Corporate, New Delhi, 2nd edition, 2010. ISBN 9788184488616.

      V. Alastrué, B. Calvo, E. Peña, and M. Doblaré. Biomechanical modeling of refractive corneal surgery. J Biomech Eng, 128(1): 150–160, feb 2006.

      N. Alpins, J. K. Y. Ong, and G. Stamatelatos. New method of quantifying corneal topographic astigmatism that cor- responds with manifest refractive cylinder. J. Cataract Refract. Surg., 38(11):1978–1988, 2012. ISSN 08863350. D O I : 10.1016/j.jcrs.2012.07.026.

      R. Ambekar, K. C. Toussaint Jr, and A. Wagoner Johnson. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater, 4(3):223–236, apr 2011. DOI: 10.1016/j.jmbbm.2010.09.014.

      D. Ambrosi, G. A. Ateshian, E. M. Arruda, S. C. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D. Humphrey, R. Kemkemer, E. Kuhl, J. E. Olberding, L. A. Taber, and K. Garikipati. Perspectives on biological growth and remodeling. J. Mech. Phys. Solids, 59 (4):863–883, 2011. ISSN 00225096. DOI: 10.1016/j.jmps.2010.12.011.

      K. Anderson, A. El-Sheikh, and T. Newson. Application of structural analysis to the mechanical behaviour of the cornea. J. R. Soc. Interface, 1(April):3–15, nov 2004. ISSN 1742-5689. DOI: 10.1098/rsif.2004.0002.

      M. C. Arbelaez, F. Versaci, G. Vestri, P. Barboni, and G. Savini. Use of a support vector machine for keratoconus and sub- clinical keratoconus detection by topographic and tomographic data. Ophthalmology, 119(11):2231–2238, nov 2012. D O I : 10.1016/j.ophtha.2012.06.005.

      M. Á. Ariza-Gracia. A numerical simulation of Non-Contact Ocular Tonometry Based on Patient Specific Model. Master Thesis. University of Zaragoza, 2014.

      M. Á. Ariza-Gracia, W. Wu, B. Calvo, P. Büchler, M. Malvè, and J. F. Rodríguez Matas. Fluid-Structure Simulation of a General Non-Contact Tonometry. A Required Complexity? Biomech. Model. Mechanobiol., In Preparation.

      M. Á. Ariza-Gracia, D. P. Piñero, J. F. Rodriguez, R. J. Pérez-Cambrodí, and B. Calvo. Interaction between diurnal variations of intraocular pressure, pachymetry, and corneal response to an air puff: Preliminary evidence. JCRS Online Case Reports, 3(1):12–15, 2014.

      M. Á. Ariza-Gracia, J. F. Zurita, D. P. Piñero, J. F. Rodriguez-Matas, and B. Calvo. Coupled Biomechanical Response of the Cornea Assessed by Non-Contact Tonometry. A Simulation Study. PLoS One, 10(3):e0121486, mar 2015. ISSN 1932-6203. DOI: 10.1371/journal.pone.0121486.

      M. Á. Ariza-Gracia, S. Redondo, D. P. Llorens, B. Calvo, and J. F. Rodriguez-Matas. A predictive tool for determining patient- specific mechanical properties of human corneal tissue. Comput. Methods Appl. Mech. Eng., 317:226–247, 2016a. ISSN 00457825. DOI: 10.1016/j.cma.2016.12.013.

      M. Á. Ariza-Gracia, J. Zurita, D. P. Piñero, B. Calvo, and J. F. Rodríguez-Matas. Automatized Patient-Specific Methodology for Numerical Determination of Biomechanical Corneal Response. Ann. Biomed. Eng., 44(5):1753–1772, may 2016b. ISSN 0090-6964. DOI: 10.1007/s10439-015-1426-0.

      M. Á. Ariza-Gracia, Á. Ortillés, J. Á. Cristobal, J. F. Rodríguez Matas, and B. Calvo. A Numerical-Experimental Protocol to Cha- racterize Corneal Tissue with an Application to Predict Astigmatic Keratotomy Surgery. J. Mech. Behav. Biomed. Mater., Accepted 12th June, 2017.

      R. Asher, A. Gefen, E. Moisseiev, and D. Varssano. Etiology of Keratoconus: proposed biomechanical pathogenesis. Silico Cell Tissue Sci., 1(1):3, 2014. ISSN 2196-050X. DOI: 10.1186/2196-050X-1-3.

      R. Asher, A. Gefen, E. Moisseiev, and D. Varssano. An Analytical Approach to Corneal Mechanics for Determining Practical, Clinically-Meaningful Patient-Specific Tissue Mechanical Properties in the Rehabilitation of Vision. Ann. Biomed. Eng., 43(2):274–286, 2015. ISSN 15739686. DOI: 10.1007/s10439-014-1147-9.

      D. A. Atchison. Chromatic dispersions of the ocular media of human eyes. J. Opt. Soc. Am. A, 22(1):29–37, 2005.

      M. D. Bailey and K. Zadnik. Outcomes of LASIK for Myopia With FDA-Approved Lasers. Cornea, 26(3):246–254, apr 2007.

      ISSN 0277-3740. DOI: 10.1097/ICO.0b013e318033dbf0.

      F. Bao, M. Deng, Q. Wang, J. Huang, J. Yang, C. Whitford, B. Geraghty, A. Yu, and A. Elsheikh. Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes. Exp Eye Res, 137:11–17, aug 2015. DOI: 10.1016/j.exer.2015.05.018.

      A. Bedei, I. Appolloni, A. Madesani, A. Pietrelli, S. Franceschi, and L. Barabesi. Repeatability and agreement of 2 Scheimpflug analyzers in measuring the central corneal thickness and anterior chamber angle, volume, and depth. Eur. J. Oph- thalmol., 22(Suppl. 7):29–32, 2012. ISSN 1120-6721. DOI: 10.5301/ejo.5000102.

      A. Benoit, G. Latour, S.-K. Marie-Claire, and J.-M. Allain. Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure. J Mech Behav Biomed Mater, 60:93–105, jul 2016. D O I : 10.1016/j.jmbbm.2015.12.031.

      F. Boschetti and A. Pandolfi. Biomechanical Properties of Porcine Corneas. J. Biomchanics, 45:2012, 2012. ISSN 00219290. DOI: 10.1016/S0021-9290(12)70579-1.

      F. Boschetti, V. Triacca, L. Spinelli, and A. Pandolfi. Mechanical Characterization of Porcine Corneas. J. Biomech. Eng., 134(3): 031003, 2012. ISSN 01480731. DOI: 10.1115/1.4006089.

      J. Bouguet. Camera Calibration Toolbox for Matlab. Computational Vision at the California Institute of Technology, 2011.

      J.-L. Bourges, N. Alfonsi, J.-F. Laliberté, M. Chagnon, G. Renard, J.-M. Legeais, and I. Brunette. Average 3-dimensional models for the comparison of Orbscan II and Pentacam pachymetry maps in normal corneas. Ophthalmology, 116(11):2064–2071, nov 2009. DOI: 10.1016/j.ophtha.2009.04.036.

      A. Elsheikh and K. Anderson. Comparative study of corneal strip extensometry and inflation tests. J. R. Soc. Interface, 2(3): 177–85, 2005. ISSN 1742-5689. DOI: 10.1098/rsif.2005.0034.

      A. Elsheikh, D. Wang, A. Kotecha, M. Brown, and D. Garway-Heath. Evaluation of Goldmann Applanation Tonometry Us- ing a Nonlinear Finite Element Ocular Model. Ann. Biomed. Eng., 34(10):1628–1640, oct 2006. ISSN 0090-6964. D O I : 10.1007/s10439-006-9191-8.

      A. Elsheikh, D. Alhasso, and P. Rama. Biomechanical properties of human and porcine corneas. Exp. Eye Res., 86(5):783–790, 2008a. ISSN 00144835. DOI: 10.1016/j.exer.2008.02.006.

      A. Elsheikh, D. Alhasso, and P. Rama. Assessment of the epithelium’s contribution to corneal biomechanics. Exp. Eye Res., 86(2):445–451, 2008b. ISSN 00144835. DOI: 10.1016/j.exer.2007.12.002.

      A. Elsheikh, M. Brown, D. Alhasso, P. Rama, M. Campanelli, and D. Garway-Heath. Experimental assessment of corneal anisotropy. J. Refract. Surg., 24(2):178–87, feb 2008c. ISSN 1081-597X.

      A. Elsheikh, S. Ross, D. Alhasso, and P. Rama. Numerical study of the effect of corneal layered structure on ocular biome- chanics. Curr. Eye Res., 34(1):26–35, jan 2009. ISSN 1460-2202. DOI: 10.1080/02713680802535263.

      A. Elsheikh, C. Whitford, R. Hamarashid, W. Kassem, A. Joda, and P. Büchler. Stress free configuration of the human eye. Med Eng Phys, 35(2):211–216, feb 2013. ISSN 13504533. DOI: 10.1016/j.medengphy.2012.09.006.

      A. Elsheikh, A. Joda, A. Abass, and D. Garway-Heath. Assessment of the Ocular Response Analyzer as an Instrument for Measurement of Intraocular Pressure and Corneal Biomechanics. Curr. Eye Res., 3683(0):1–9, 2014. ISSN 0271-3683. DOI: 10.3109/02713683.2014.978479 [doi].

      A. Elsheikh, C. W. McMonnies, C. Whitford, and G. C. Boneham. In vivo study of corneal responses to increased intraocular pressure loading. Eye Vis, 2:20, 2015. DOI: 10.1186/s40662-015-0029-z.

      F. Faria-Correia, I. Ramos, B. Valbon, A. Luz, C. J. Roberts, and R. Ambrósio Jr. Scheimpflug-based tomography and biomechani- cal assessment in pressure-induced stromal keratopathy. J Refract Surg, 29(5):356–358, may 2013. D O I : 10.3928/1081597X- 20130129-03.

      B. A. Fink, H. Wagner, K. Steger-May, C. Rosenstiel, T. Roediger, T. T. McMahon, M. O. Gordon, and K. Zadnik. Differences in Keratoconus as a Function of Gender. Am. J. Ophthalmol., 140(3):459.e1–459.e12, sep 2005. ISSN 00029394. D O I : 10.1016/j.ajo.2005.03.078.

      B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé. Corneal Biomechanical Metrics and Anterior Segment Parameters in Mild Keratoconus. Ophthalmology, 117(4):673–679, apr 2010. DOI: 10.1016/j.ophtha.2009.09.023.

      J. G. Galletti, T. Pförtner, and F. F. Bonthoux. Improved Keratoconus Detection by Ocular Response Analyzer Testing After Consideration of Corneal Thickness as a Confounding Factor. J. Refract. Surg., 28(3):202–208, mar 2012. ISSN 1081-597X. DOI: 10.3928/1081597X-20120103-03.

      A. Garg, J. L. Alio, B. Pajic, and C. K. Mehta, editors. Mastering the techniques of LASIK, EPILASIK, and LASEK : techniques and technology. Japee Brothers Medical Publishers, 2007. ISBN 9788180619007.

      T. C. Gasser, R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface, 3(6):15–35, feb 2006. DOI: 10.1098/rsif.2005.0073.

      A. Gefen, R. Shalom, D. Elad, and Y. Mandel. Biomechanical analysis of the keratoconic cornea. J. Mech. Behav. Biomed. Mater., 2(3):224–236, jul 2009. ISSN 17516161. DOI: 10.1016/j.jmbbm.2008.07.002.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno