Esta tesis doctoral consta de dos partes claramente diferenciadas. En la primera de ellas se utiliza una herramienta matemática llamada current para caracterizar cuerpos geométricos y poder trabajar con ellos en un espacio de Hilbert con propiedades prácticas: un vector-valued Reproducing Kernel Hilbert Space. Al representar los cuerpos geométricos mediante funciones en este espacio, podemos utilizar la teoría de Análisis de Datos Funcionales para adaptar técnicas estadísticas (como algoritmos de clasificación o métodos de regresión) a un conjunto de cuerpos geométricos. Finalmente, se aplican los modelos teóricos desarrollados a una base de datos formada por escáneres de cuerpos de niños y niñas, para resolver problemas relacionados con el tallaje infantil.
La segunda parte del trabajo se desarrolla dentro del ámbito de la Estereología. En él obtenemos fórmulas rotacionales para el área y para las integrales de curvatura media de la superficie frontera de un dominio compacto en un espacio de curvatura constante λ.
This doctoral thesis consists of two clearly differentiated parts. In the first one, a mathematical tool called current is used to characterize geometric bodies as functions in a vector-valued Reproducing Kernel Hilbert Space, which is a Hilbert spaces with practical properties. Using Functional Data Analysis Theory we can apply statistical techniques, such us classification algorithms or regression methods, to a set of functions representing geometric bodies. Later, the theoretical models that have been developed are applied to a database consisting of scans of bodies of children to solve problems related to sizing children. The second part of the work is developed within the scope of Stereology. In this part we obtain rotational formulas for the area and for the average curvature integrals of the boundary surface of a compact domain in a space of constant curvature λ.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados