Ayuda
Ir al contenido

Dialnet


Encapsulation of inorganic payloads into carbon nanotubes with potential application in therapy and diagnosis /

  • Autores: Markus Martincic
  • Directores de la Tesis: Gerard Tobías Rossell (dir. tes.), José Peral Pérez (tut. tes.)
  • Lectura: En la Universitat Autònoma de Barcelona ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: Enric Bertran Serra (presid.), Josep Ros i Badosa (secret.), Christoph Salzmann (voc.)
  • Programa de doctorado: Programa Oficial de Doctorado en Ciencia de Materiales
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: DDD
  • Resumen
    • Carbon nanotubes present a relatively novel group of materials with potential application in different scientific fields. The scope of this Thesis is to benefit from their inner cavities to encapsulate biomedically relevant payloads. Carbon nanotubes allow the confinement of selected materials within their walls, preventing their leakage and, as a consequence, undesired effects of such materials to the surrounding media. This makes filled carbon nanotubes very elegant vectors for the diagnosis and therapy of diseases.

      The process used to purify samples of carbon nanotubes proved to be a valuable asset, not only in the reduction of impurities which might cause cytotoxicity, but also for shortening the length of nanotubes. Thermogravimetric analysis is a widely-used technique in evaluating the purity of carbon nanotube samples. The role of different parameters that control the analysis has been investigated to assure that the most appropriate and representative results are obtained. The purification process has also been readjusted to assure the presence of the lowest amount of catalyst possible in the carbon nanotube samples with the employed purification strategy. We have also introduced a simple UV-Vis spectrophotometric assertion of the catalyst content in samples of nanotubes in a precise and reliable manner.

      The preparation of dry samarium(III) chloride from samarium(III) oxide was investigated, together with the nanotube filling-ability of the prepared material, of interest for the development of radiotracers. Bulk filling of carbon nanotubes results in samples that contain a large amount of external, non-encapsulated material, which can compromise the performance of the material in the biological context. We have developed a protocol to monitor the removal of the non-encapsulated material by means of UV-Vis, which in turn allows improving the washing procedure.

      The usage of multi-walled carbon nanotubes has some benefits over their single-walled counterparts, due to the presence of a bigger cavity which can host more material. The spontaneous closure of the tips of multi-walled carbon nanotubes by thermal annealing was investigated at different temperatures, along with the encapsulation of different materials. The prepared filled multi-walled samples were tested in-vitro to assess cytotoxicity and cellular uptake of the developed nanosystems.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno