Ayuda
Ir al contenido

Dialnet


Resumen de Periodization of apnea training

Francisco de Asis Fernández Martínez

  • Introducción. Tras la ruptura de la respiración, comienzan a producirse una sucesión de procesos encaminados a adaptar el organismo a la heterostasis provocada. Los diferente factores de rendimiento de la "Apnea Indoor" (apnea estática y apnea dinámica, con y sin aletas) han sido estudiados con anterioridad. En esta Tesis doctoral se estudia el grado de correlación existente entre algunos de los factores de rendimiento de la Apnea Indoor - almacenaje total de O2/CO2, metabolismo basal y tolerancia a la asfixia - con el rendimiento específico de la misma. Además, se analizan los posibles beneficios sobre el rendimiento en Apnea Indoor que otorga el entrenamiento periodizado, por un lado, y la inclusión de cargas físicas por el otro.

    Contenido de la Investigación. Veintinueve apneístas masculinos (36±5.07 años, IMC 22.8±1.43) con 1.09±0.66 años de experiencia en la Apnea Indoor fueron divididos en dos grupos de entrenamiento periodizado - entrenamiento cruzado (EC; n=10) y entrenamiento en apnea tradicional (EAT; n=9) - y un grupo control (GC; n=10). El programa de entrenamiento implantado, para los dos grupos de entrenamiento periodizado, fue de veintidós semanas de duración con microciclos semanales de tres sesiones de entrenamiento de noventa minutos. Con el fin de conocer el grado de correlación existente entre los factores del rendimiento de la Apnea Indoor con el rendimiento específico de la misma, así como las adaptaciones logradas por los diferentes grupos de entrenamiento, se realizaron una serie de test antes y después de los programas de entrenamiento.

    Los resultados muestran una correlación entre el rendimiento en la Apnea Indoor y la altura (r = 0.491), la capacidad vital (r = 0.539), volemia (r = 0.466), frecuencia mínima alcanzada durante la anea estática en seco (r = - 0.624), la masa magra corporal (r = 0.406) y la SpO2 mínima alcanzada durante la apnea estática en seco (r = - 0.485).

    Tras la intervención de los entrenamientos, los apneístas del grupo control mejoraron su rendimiento en Apnea Indoor en un 4.6 %, mientras que el grupo de EC y EEA mejoraron en un 30.3 % y 27 % respectivamente. Las mejoras producidas sobre el rendimiento en Apnea Indoor tras ambos entrenamientos periodizados - EC y EEA - fueron similares, no obstante mientras que la apnea estática mejora mas en el grupo de EEA, las disciplinas dinámicas obtienen mejores resultados tras el EC.

    Conclusiones. En apneístas de nivel medio, los factores de rendimiento más determinantes de la Apnea Indoor, son: el almacenaje total de O2/CO2 en el organismo y la capacidad física/mental individual del apneísta para soportar las condiciones extremas de hipoxia e hipercapnia. Por otra parte, los resultados ponen de manifiesto la considerable mejora producida sobre el rendimiento en la Apnea Indoor a través de la inclusión de un sistema de entrenamiento periodizado en objetivos y contenidos a medio y largo plazo; además, la inclusión de cargas físicas asociadas al entrenamiento de apnea, incrementa el rendimiento en las disciplinas dinámicas - DYN y DNF, respecto a un entrenamiento de apnea exclusivo y aislado.

    REFERENCIAS 1. Kooyman GL. Diverse divers: physiology and behavior; Zoophysiology. 1ª ed. Berlin: Springer-Verlag; 1989.

    2. Rahn H Y. Physiology of Breath-Hold Diving and the Ama of Japan. En: National Research Council. Washington DC; 1965.

    3. Schagatay E, Lodin-Sundström A, Abrahamsson E. Underwater working times in two groups of traditional apnea divers in Asia: the Ama and the Bajau. Diving Hyperb Med.2011; 41(1):27-30.

    4. Schagatay E, Johansson O. Sara Campbell: World Champion in Deep Diving After 9 Months of Training–How. Is This Possible? Human Evolution. 2014; 29 (1-3): 67-73.

    5. Dejours P. Hazards of hypoxia during diving in Physiology of breath-holding and the Ama of Japan. En: National Research Council.Washington DC; 1965.

    6. Hentsch U, Ulmer HV. Trainability of underwater breath-holding time. Int J Sports Med. 1984; 6: 343-7.

    7. Lin Y-C, Hong S. Hyperbaria: breath-hold diving. Handbook of environmental physiology. 1996; 979-995.

    8. Ferrigno M. Human breath-hold diving. En:Lundgren C. The lung at depth: lung biology in health and disease. New York: Miller J; 1999.

    p. 529-585.

    9. Lin YC. Physiological and conventional breath-hold breaking points. J Appl Physiol. 1974; 3: 291-6.

    10. Lin YK, Shida KK, Hong, SK. Effects of hypercapnia, hypoxia, and rebreathing on circulatory response to apnea. J Appl Physiol. 1983; 1: 172-177.

    11. Asmussen NG, Kristiansson NG. The "diving bradycardia" in exercising man. Acta Physiol Scand. 1968; 73(4): 527–535.

    12. Elsner R, Gooden BA, Robinson SM. Arterial blood gas changes and the diving response in man. Aust J Exp Biol Med Sci. 1971; 49(5): 435-444.

    13. Leuenberger U. Hypoxia augments apnea-induced peripheral vasoconstriction in humans. J Appl Physiol. 2001; 90(4): 1516–22.

    14. Heusser K. Cardiovascular regulation during apnea in elite divers. Hypertension. 2009; 4: 719-24.

    15. Palada I, Bakovic D. Restoration of hemodynamics in apnea struggle phase in association with involuntary breathing movements. Respir Physiol Neurobiol. 2008; 161(2): 174–81.

    16. Andersen HT. Physiological adaptations in diving vertebrates. Physiol Rev. 1966; 2: 212-43.

    17. Sieber A. Underwater study of arterial blood pressure in breath-hold divers. J Appl Physiol. 2009; 5: 1526-31.

    18. Andersson J, Schagatay E. Effects of lung volume and involuntary breathing movements on the human diving response. Eur J Appl Physiol Occup Physiol. 1997; 1: 19-24.

    19. Lindholm, P. and C.E. Lundgren, The physiology and pathophysiology of human breath-hold diving. J Appl Physiol, 2009. 106(1): p. 284-92.

    20. Ferrigno M. Cardiac performance in humans during breath holding. J Appl Physiol. 1986; 6: 1871-7.

    21. Jung KS. Behavior of heart rate and incidence of arrhythmia in swimming and diving. Biotelem Patient Monit. 1981; 4: 228-39.

    22. Andersson J. Cardiovascular responses to cold-water immersions of the forearm and face, and their relationship to apnoea. Eur J Appl Physiol. 2000; 6: 566-72.

    23. Leuenberger UA. Hypoxia augments apnea-induced peripheral vasoconstriction in humans. J Appl Physiol. 2001; 4; 1516-22.

    24. Potkin RC, Siegel R. Effects of glossopharyngeal insufflation on cardiac function: an echocardiographic study in elite breath-hold divers. J Appl Physiol. 2007; 3: 823-7.

    25. Nygren-Bonnier M. Effects of glossopharyngeal pistoning for lung insufflation in elite swimmers. Med Sci Sports Exerc. 2007; 5: 836-41.

    26. Novalija J. Cardiovascular aspects of glossopharyngeal insufflation and exsufflation. Undersea Hyperb Med. 2007; 6: 415-23.

    27. Overgaard KF, Pedersen R, Lykkeboe G. Influence of lung volume, glossopharyngeal inhalation and P(ET) O2 and P(ET) CO2 on apnea performance in trained breath-hold divers. Eur J Appl Physiol. 2006; 2: 158-164.

    28. Fagius JS. The diving response in man: effects on sympathetic activity in muscle and skin nerve fascicles. J Physiol. 1986; 1: 429-443.

    29. Bosco G, Zanon V, Fanò G. Breath-hold diving: a point of view. Sport Sciences for Health. 2007; 2: 47-54.

    30. Furlan R. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res. 1993; 3: 482-8.

    31. Saito S, Hachiya T. Resistance exercise training enhances sympathetic nerve activity during fatigue-inducing isometric handgrip trials. Eur J Appl Physiol. 2009; 2: 225-34.

    32. Ferrigno M. Cardiovascular changes during deep breath-hold dives in a pressure chamber. J Appl Physiol. 1997; 4: 1282-1290.

    33. Ferretti G. Extreme human breath-hold diving. Eur J Appl Physiol. 2001; 4: 254-271.

    34. Andersson J. Arterial oxygen saturation and diving response during dynamic apneas in breath-hold divers. Scand J Med Sci Spor. 2009; 1: 87-91.

    35. Perini A, Moia C, Sponsiello N, Ferretti G. Cardiovascular time courses during prolonged immersed static apnoea. Eur J Appl Physiol. 2010; 2: 277-83.

    36. Breskovic T. Cardiovascular changes during underwater static and dynamic breath-hold dives in trained divers. J Appl Physiol. 2011; 3: 673-678.

    37. Craig AB, Medd WL. Man's responses to breath-hold exercise in air and in water. J Appl Physiol. 1968; 6: 773-7.

    38. Schagatay E, Andersson J, Nielsen B. Hematological response and diving response during apnea and apnea with face immersion. Eur J Appl Physiol. 2007; 1: 125-132.

    39. Schuitema K, Holm B. The role of different facial areas in eliciting human diving bradycardia. Acta Physiol Scand. 1988; 1: 119-20.

    40. Sterba JA, Lundgren CE. Breath-hold duration in man and the diving response induced by face immersion. Undersea Biomedical Research, 1988; 5: 361-375.

    41. Foster GE, Sheel AW. The human diving response, its function, and its control. Scand J Med Sci Spor. 2005; 1: 3-12.

    42. Dean J, Ballantyne D, Cardone D. Role of gap junctions in CO2 chemoreception and respiratory control. Am J Physiol Lung Cell Mol Physiol. 2002; 283 (4): 665-70.

    43. Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol. 2009: 1473-95.

    44. Perez ME. Control de la respiración. Manual de Neumología y Cirugía Toracica.1ª ed. Madrid: Editores médicos; 1998.

    45. Parkes MJ. Breath-holding and its breakpoint. Experimental Physiology. 2006; 1: 1-15.

    46. Schagatay E. Predicting performance in competitive apnea diving, part II: dynamic apnoea. Diving Hyperb Med. 2010; 1: 11-22.

    47. Engan H. Blood lactate after deep dives in 3 disciplines of competitive apnea. En: 36th Annual Scientific Meeting of the European Underwater and Baromedical Society. Istanbul; 2010.

    48. Andersson J. Cardiovascular and respiratory responses to apneas with and without face immersion in exercising humans. J Appl Physiol. 2004; 3: 1005-1010.

    49. Schagatay, E. and J. Andersson, Diving response and apneic time in humans. Undersea Hyperb Med, 1998. 25(1): p. 13-9.

    50. Qvist J. Hemoglobin concentrations and blood gas tensions of free-diving Weddell seals. J Appl Physiol. 1986; 4): 1560-1569.

    51. Schagatay E, Haughey H, Reimers J. Speed of spleen volume changes evoked by serial apneas. Eur J Appl Physiol. 2005; 4: 447-452.

    52. Schagatay E. Physiological and genomic consequences of intermittent hypoxia. Selected contribution: role of spleen emptying in prolonging apneas in humans. J Appl Physiol. 2001; 90:1623-9.

    53. Jackson DC. Surviving extreme lactic acidosis: the role of calcium lactate formation in the anoxic turtle. Respir Physiol Neurobiol. 2004; 2–3: 173-178.

    54. Andrzej O. The Role of Training in the Development of Adaptive Mechanisms in Freedivers. J Human Kinetics. 2012; 32:197-210 55. Lindholm P. Alveolar gas composition before and after maximal breath-holds in competitive divers. Undersea Hyperb Med. 2006; 33(6): 463-7.

    56. Dujic Z. Involuntary breathing movements improve cerebral oxygenation during apnea struggle phase in elite divers. J Appl Physiol, 2009; 6: 1840-6.

    57. Schagatay E. Predicting performance in competitive apnea diving. Part III: deep diving. Diving Hyperb Med. 2011: 4; 216-28.

    58. Schagatay E. Predicting performance in competitive apnoea diving. Part I: static apnoea. Diving Hyperb Med. 2009; 2: 88-99.

    59. Rahn H. Oxygen stores of man. Oxygen in the animal organism. New York: Dickens & Neil; 1964.

    60. Bruijn R. Increased erythropoietin concentration after repeated apneas in humans. Eur J Appl Physiol. 2008; 5: 609-613.

    61. Ferretti G, Costa M. Diversity in and adaptation to breath-hold diving in humans. Comp Biochem Physiol A Mol Integr Physiol. 2003; 1: 205-213.

    62. Schagatay E, Richardson M, Lodin-Sundström A. Size matters: spleen and lung volumes predict performance in human apneic divers. Front Physiol. 2012; 3: 173.

    63. Schagatay E, Lodin-Sundström A, Richardson M. Lung volume and diving performance in elite apnoeists. En: 33rd Annual Scientific Meeting of the European Underwater and Baromedical Society. Sharm el Sheikh, Egypt; 2007.

    64. Whittaker LA, Irvin CG. Going to extremes of lung volume. J Appl Physiol. 2007; 3: 831-833.

    65. Dail CW, Affeldt JE, Collier CR. Clinical aspects of glossopharyngeal breathing; report of use by one hundred postpoliomyelitic patients. J Am Med Assoc. 1955; 6: 445-9.

    66. Santana A. -122 m: mucho más que un récord. El País. En prensa 2014.

    67. Lindholm P, Nyren S. Studies on inspiratory and expiratory glossopharyngeal breathing in breath-hold divers employing magnetic resonance imaging and spirometry. Eur J Appl Physiol. 2005; 5-6: 646-51.

    68. Seccombe LM. Features of glossopharyngeal breathing in breath-hold divers. J Appl Physiol. 2006; 3: 799-801.

    69. Loring SH. Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers. J Appl Physiol. 2007; 3: 841-846.

    70. Liner MH, Linnarsson D. Tissue oxygen and carbon dioxide stores and breath-hold diving in humans. J Appl Physiol. 1994; 2: 542-547.

    71. Dominguez de Villota E, Ruiz M. Equality of the in vivo and in vitro oxygen-binding capacity of haemoglobin in patients with severe respiratory disease. Br J Anaesth. 1981; 53 (12) :1325-8.

    72. De Bruijn R. Hemoglobin levels in elite divers, elite skiers and untrained humans. En: 33rd Annual Scientifi c Meeting of the European Underwater and Baromedical Society. Corsica, France; 2004.

    73. Prommer N. Total haemoglobin mass and spleen contraction: a study on competitive apnea divers, non-diving athletes and untrained control subjects. Eur J Appl Physiol. 2007; 6: 753-759.

    74. Kang BS. Changes in Body Temperature and Basal Metabolic Rate of the Ama. J Appl Physiol. 1963; 14(3): 193.

    75. Davis R. The diving paradox: new insights into the role of the dive response in air-breathing vertebrates. Comp Biochem Physiol A Mol Integr Physiol. 2004; 3: 263-268.

    76. Kooyman JL, Ponganis PJ. The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol. 1998; 60: 19-32.

    77. Laub M. Spleen emptying and venous hematocrit in humans during exercise. J Appl Physiol. 1993; 3: 1024-1026.

    78. Bakovic D. Effect of human splenic contraction on variation in circulating blood cell counts. Clin Exp Pharmacol Physiol. 2005; 11: 944-51.

    79. Stewart I. Arterial Oxygen Desaturation Kinetics during Apnea. Med Sci Sports Exerc. 2005; 11):1871-1876.

    80. Richardson MX. Short-term effects of normobaric hypoxia on the human spleen. Eur J Appl Physiol. 2008; 2: 395-9.

    81. Lodin-Sundström A, Schagatay E. Spleen Contraction During 20 min Normobaric Hypoxia and 2 min Apnea in Humans. Aviation, Space & Environmental Medicine. 2010; 6: 545-549.

    82. Elsner R, Gooden B. Diving and asphyxia. A comparative study of animals and man. Monogr Physiol Soc. 1983; 40: 1-168.

    83. Lindholm P. Effects of fasting and carbohydrate consumption on voluntary resting apnea duration. Eur J Appl Physiol. 2007; 100(4): 417-25.

    84. Schagatay E. The human diving response - effects of temperature and training. Lund: Lund University; 1996.

    85. Stiegler P, Cunliffe A. The Role of Diet and Exercise for the Maintenance of Fat-Free Mass and Resting Metabolic Rate During Weight Loss. Sports Medicine. 2006; 36(3): 239-262.

    86. Feldschuh J, Enson Y. Prediction of the normal blood volume. Relation of blood volume to body habitus. Circulation. 1977; 56(4): 605-12.

    87. Convertino V. Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. J Appl Physiol. 1980. 48(4): 665-669.

    88. Tikuisis P. Comparison of thermoregulatory responses between men and women immersed in cold water. J Appl Physiol. 2000; 89(4): 1403-1411.

    89. Cannon P, Keatinge W. The metabolic rate and heat loss of fat and thin men in heat balance in cold and warm water. J Physiol. 1960; 154(2): 329-44.

    90. McArdle WD. Thermal adjustment to cold-water exposure in resting men and women. J Appl Physiol. 1984; 56(6): 1565-1571.

    91. Olsen CR, Fanestil DD, Scholander PF. Some effects of apneic underwater diving on blood gases, lactate, and pressure in man. J Appl Physiol. 1962; 17(6): 938-942.

    92. Westerblad H, Allen DG Lännergren J. Muscle Fatigue: Lactic Acid or Inorganic Phosphate the Major Cause?. News Physiol Sci. 2002; 17(1): 17-21.

    93. Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol. 2008; 104(2): 551-558.

    94. Secher NH, Seifert T, Van Lieshout JJ. Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol. 2008; 104(1): 306-314.

    95. Amann M, Calbet JAL. Convective oxygen transport and fatigue. J Appl Physiol. 2008; 104(3): 861-870.

    96. Metzger JM, Moss RL. Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol. 1987; 393(1): 727-742.

    97. Bangsbo J. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol. 1996. 495(2): 587-596.

    98. Schagatay E, Van Kampen M, Andersson J. Effects of repeated apneas on apneic time and diving response in non-divers. Undersea Hyperb Med. 1999; 26(3): 143-149.

    99. Farhi LE, Linnarsson D. Cardiopulmonary readjustments during graded immersion in water at 35 °C. Respir Physiol. 1977; 30(1–2): 35-50.

    100. Holmér I. Oxygen uptake during swimming in man. J Appl Physiol. 1972; 33(4): 502-509.

    101. Zamparo P. Economy and efficiency of swimming at the surface with fins of different size and stiffness. Eur J Appl Physiol. 2006; 96(4): 459-470.

    102. Zamparo P. How fins affect the economy and efficiency of human swimming. J Exp Biol. 2002; 205(17): 2665-2676.

    103. Minak G. Evaluation of the performances of free-diving fins. Sports Engineering. 2004; 7(3): 153-158.

    104. Starling RD. Effect of swimming suit design on the energy demands of swimming. Med Sci Sports Exerc. 1995; 27(7): 1086-1089.

    105. Alexander R. Mechanics and energetics of animal locomotion. Goldspink G. London: Chapman and Hall; 1977.

    106. Johns RA. Effects of taper on swim power, stroke distance, and performance. Med Sci Sports Exerc. 1992; 24(10): 1141-1146.

    107. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992; 72(2): 449-89.

    108. Balestra C. Serum erythropoietin levels in healthy humans after a short period of normobaric and hyperbaric oxygen breathing: the "normobaric oxygen paradox". J Appl Physiol. 2006; 100(2): 512-8.

    109. Lai JCC. Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen. J Exp Biol. 2006; 209(14): 2734-2738.

    110. Botella de Maglia J, Real Soriano R, Compte Torrero L, [Arterial oxygen saturation during ascent of a mountain higher than 8,000 meters]. Med intensiva. 2008; 32(6): 277-281.

    111. Dickhuth. The echocardiographic determination of volume and muscle mass of the heart. Int J Sports Med. 1996; 17(3): 132-9.

    112. Bass DE. Mechanisms of Acclimatization to Heat in Man. Medicine. 1955; 34(3): 323-380.

    113. Espersen K. The human spleen as an erythrocyte reservoir in diving-related interventions. J Appl Physiol. 2002; 92(5): 2071-9.

    114. Richardson M, de Bruijn R, Schagatay E, Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit. Eur J Of Appl Physiol. 2009; 105(1): 63-68.

    115. Schagatay E. Selected Contribution: Role of spleen emptying in prolonging apneas in humans. J Appl Physiol. 2001; 90(4): 1623-1629.

    116. Stanek KS. Continuous pulse oximetry in the breath-hold diving women of Korea and Japan. Undersea Hyperb Med. 1993; 20(4): 297-307.

    117. Fernández FA. Predicting static and dynamic apnea performance in elite divers using a 2-minute static apnea test. En: 41st Congress of the European Underwater & Baromedical Society. Amsterdam; 2015.

    118. Joulia F. Breath-hold training of humans reduces oxidative stress and blood acidosis after static and dynamic apnea. Respir Physiol Neurobiol. 2003; 137(1): 19-27.

    119. Joulia F. Circulatory effects of apnoea in elite breath-hold divers. Acta Physiologica. 2009; 197(1): 75-82.

    120. Telles S, Reddy S, Nagendra HR. Oxygen Consumption and Respiration Following Two Yoga Relaxation Techniques. Appl Psychophysiol Biofeedback. 2000; 25(4): 221-227.

    121. Ferretti G. Alveolar gas composition and exchange during deep breath-hold diving and dry breath holds in elite divers. J Appl Physiol. 1991. 70(2): 794-802.

    122. Joulia F. Reduced oxidative stress and blood lactic acidosis in trained breath-hold human divers. Respir Physiol Neurobiol. 2002; 133(1-2): 121-30.

    123. Laursen P, Jenkins D. The Scientific Basis for High-Intensity Interval Training. Sports Medicine. 2002; 32(1): 53-73.

    124. Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010; 2: 1-10.

    125. Gibson H, Edwards RHT. Muscular Exercise and Fatigue. Sports Medicine. 1985; 2(2): 120-132.

    126. Bompa T. Periodization: Theory and methodology of training. Champaign IL. 5ª ed. Human Kinetics; 1999.

    127. Issurin V. New Horizons for the Methodology and Physiology of Training Periodization. Sports Medicine. 2010; 40(3): 189-206.

    128. Kiely J. New horizons for the methodology and physiology of training periodization: block periodization: new horizon or a false dawn?. Sports medicine. 2010; 40(9): 803-5.

    129. Tschiene P. Teoría del entrenamiento: clasificación de las cargas y modelos de los métodos de entrenamiento según el criterio de adaptación. 2ª ed. INFOCOES; 1997.

    130. Issurin V. Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness. 2008; 48(1): 65-75.

    131. González-Ravé JM, Navarro F. The planning of the sport training: tie changes to the new forms to understand the contemporary sport structures. CONEXÕES, Revista da Faculdade de Educação Física da UNICAMP. 2007; 5(1).

    132. Matveyev L. Periodización del entrenamiento deportivo. I.N.E.F. Madrid; 1977.

    133. Fry R, Morton A, Keast D. Periodisation of training stress: a review. Can J Sports Sci. 1992; 17: 234-240.

    134. Lemaître F. Apnea: A new training method in sport? Medical Hypotheses. 2010; 74(3): 413-415.

    135. Schagatay E. Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol. 2000; 82(3): 161-169.

    136. Lemaitre F. Physiological responses to repeated apneas in underwater hockey players and controls. Undersea Hyperb Med. 2007; 34(6): 407-14.

    137. Navarro F, Verdugo M. Modulo de Programación del entrenamiento de resistencia [Apuntes].Universidad Autónoma de Madrid: Máster de Alto Rendimiento del Comité Olímpico Español; 2007.

    138. Platonov V. El entrenamiento deportivo, teoría y metodología. 4ª ed. Barcelona. Paidotribo; 1995.

    139. Fitz-Clarke JR, Morton RH, Banister EW. Optimizing athletic performance by influence curves. J Appl Physiol. 1991; 71(3): 1151-58.

    140. Foster C. Athletic performance in relation to training load.Wis med. 1996; 95(6): 370-4.

    141. Rhea MR, Alderman BL. A Meta-Analysis of Periodized versus Nonperiodized Strength and Power Training Programs. Res Q Exerc Sport. 2004; 75(4): 413-422.

    142. Fleck S. Periodized Strength Training: A Critical Review. J Strength and Cond Res. 1999; 13(1): 82-89.

    143. Gª Manso J, Navarro M. Planificación del entrenamiento deportivo. Ruiz R. Madrid: Gymnos; 1996.

    144. Borg G. Perceived Exertion as an indicator of somatic stress Scand J Rehabil Med. 1970; 2 (2): 92-8.

    145. Efdeportes [sede Web]. Buenos Aires; 2002. De Barrios-Duarte R. Consideraciones sobre métodos de control psicológico en el entrenamiento de resistencia. Disponible en: http://www.efdeportes.com, revista digital., 2002. 45.

    146. Arruza J. Esfuerzo percibido y frecuencia cardiaca: el control de la intensidad de los esfuerzos en el entrenamiento de Judo. Revista de Psicología del Deporte. 1996; 9: 29-40.

    147. Borg G. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982; 14(5): 377-81.

    148. Borg G. Subjetive aspects of physical and mental load. Ergonomics 1978; 3: 215 - 20.

    149. Schagatay E. Spleen size and diving performance in elite apnoeists. En: 33rd Annual Scientific Meeting of the European Underwater and Baromedical Society. Sharm el Sheikh, Egypt; 2007.

    150. Pallarés J, Morán-Navarro R. Propuesta metodológica para el entrenamiento de la resistencia cardiorrespiratoria. . Journal of Sport and Health Research. 2012; 4(2): 119-136.

    151. Hemmingsson E, Udden J, Neovius M. No Apparent Progress in Bioelectrical Impedance Accuracy: Validation Against Metabolic Risk and DXA. Obesity. 2008; 17(1): 183-187.

    152. Ferrannini E. The theoretical bases of indirect calorimetry: A review. Metabolism - Clinical and Experimental. 1988; 37(3): 287-301.

    153. Sterba JA, Lundgren CE. Diving bradycardia and breath-holding time in man. Undersea Biomedical Research. 1985; 12(2): 139-150.

    154. Holm B. Cardiovascular Change in Elderly Male Breath-hold Divers (Ama) and their Socio-economical Background at Chikura in Japan. Applied Human Science. 1998; 17(5): 181-187.

    155. Hu CL. Application of the laser Doppler flowmeter for measurement of blood pressure and functional parameters of microcirculation. Biomed Mater Eng. 2012; 22(6): 351-9.

    156. Fortune J. Cerebral blood flow and blood volume in response to O2 and CO2 changes in normal humans. J Trauma. 1995; 39: 463-472.

    157. Barthelemy P. The changes in leg blood flow during and after mild or severe acute hypoxaemia in healthy humans. Clin Physiol, 2001; 21: 308–15.

    158. Aguado X. Eficacia y técnica deportiva. Análisis del movimiento humano. 1ª ed. Barcelona: INDE; 1993.

    159. Rejman M, Borowska G. Searching for criteria in evaluating the monofin swimming turn from the perspective of coaching and improving technique. J Sports Sci Med. 2008; 7(1): 67-77.

    160. Tagliabue P, Susa D, Sponsiello N. Blood lactate accumulation in static and dynamic apneas in humans. En: Human Behaviour and Limits in Underwater Environment, Special Conference on Breath hold Diving. Pisa; 2005.

    161. Stone MH. Periodization: Effects Of Manipulating Volume And Intensity. Part 1. Strength & Conditioning Journal. 1999; 21(2): 56.

    162. Zi N. El arte de respirar. 3ª ed. Arkano Books; 1997. 163. Calle R. Relajación y respiración. 1ª ed. EDAF S.A. 2002.

    164. Reference range list from Uppsala University Hospital ("Laborationslista"). Artnr 40284 Sj74a. Issued on April 22, 2.

    165. Nadler S, Hidalgo J, Bloch T. Prection of blood volume in normal human adults. Surgery. 1962; 51: 224.

    166. Wanger J. Standardisation of the measurement of lung volumes. Eur Respir J. 2005; 26(3): 511-22.

    167. Quanjer TG, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Eur Respir J Suppl. 1993; 6 (16): 5-40.

    168. Smith D, Telford R, Peltola E, Tumilty D. Physiological test for elite athletes. Gore C. Leeds: Human Kinetics; 2000.

    169. Pérez M. Pruebas funcionales de valoración aeróbica. Fisiología del ejercicio. 3ª ed. Chicharro J, Fernández-Vaquero A. Madrid: Médicina Panamericana: 2008.

    170. Crabtree N, Leonard M, Zemel B. Dual-Energy X-Ray Absorptiometry, in Bone Densitometry in Growing Patients. Sawyer A. Humana Press; 2007.

    171. Roecker K. Predicting competition performance in long-distance running by means of a treadmill test. Med Sci Sports Exerc. 1998; 30(10): 1552-7.

    172. Zampagni ML. Anthropometric and Strength Variables to Predict Freestyle Performance Times in Elite Master Swimmers. Strength & Conditioning Journal. 2008; 22(4): 1298-1307.

    173. Costa D, Gales N, Crocker D. Blood Volume and Diving Ability of the New Zealand Sea Lion, Phocarctos hookeri.. Physiological Zoology. 1998; 71(2): 208-213.

    174. McLaughlin JE. Test of the classic model for predicting endurance running performance. Med Sci Sports Exerc. 2010; 42(5): 991-997.

    175. Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000; 32(1): 70-84.

    176. Noakes TD. Maximal oxygen uptake: "classical" versus "contemporary" viewpoints: a rebuttal. Med Sci Sports Exerc. 1998; 30(9): 1381-1398.

    177. Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001; 31(1): 1-11.

    178. Fernández FA, González-Ravé JM, Juárez Santos-García D. Comparison of two different training loads in Spanish elite freedivers. En: 18th Annual Congress of the European College of Sport Science. Barcelona; 2013.

    179. Hawley JA. Muscle power predicts freestyle swimming performance. Br J Sports Med. 1992; 26(3): 151-155.

    180. Möller P, Sylvén C. Myoglobin in human skeletal muscle. Scand J Clin Lab Invest. 1981; 41(5): 479-482.

    181. Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964; 14: 844-52.

    182. Ostrowski A. The Role of Training in the Development of Adaptive Mechanisms in Freedivers. J Hum Kinet. 2012; 32: 197–210.

    183. Lemaitre F. Apnea training effects on swimming coordination. J Strength Cond Res. 2009; 23(6): 1909-14.

    184. Sarang P, Telles S. Oxygen Consumption and Respiration During and After two Yoga Relaxation Techniques. Appl Psychophysiol Biofeedback. 2006; 31(2): 143-153.

    185. Després JP. The effect of a 20-week endurance training program on adipose-tissue morphology and lipolysis in men and women. Metabolism. 1984; 33(3): 235-239.

    186. Treuth MS. Effects of strength training on total and regional body composition in older men. J Appl Physiol. 1994; 77(2): 614-620.

    187. Schmidt W. Training induced effects on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties. Eur J Appl Physiol and Occup Physiol. 1988; 57(4): 490-498.

    188. Courteix D. Effect of intensive swimming training on lung volumes, airway resistances and on the maximal expiratory flow-volume relationship in prepubertal girls. Eur J Appl Physiol and Occup Physiol. 1997; 76(3): 264-269.

    189. Mickleborough T. Pulmonary adaptations to swim and inspiratory muscle training. Eur J Appl Physiol. 2008; 103(6): 635-646.

    190. Clanton TL. Effects of swim training on lung volumes and inspiratory muscle conditioning. J Appl Physiol. 1987; 62(1): 39-46.

    191. Scheuer J, Tipton CM. Cardiovascular adaptations to physical training. Annu Rev Physiol. 1977; 39: 221-51.

    192. Wakayoshi K. Adaptations to six months of aerobic swim training. Changes in velocity, stroke rate, stroke length and blood lactate. Int J Sports Med. 1993; 14(7): 368-372.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus