Ayuda
Ir al contenido

Dialnet


M-estructura: propiedad asintótica normante, renormaciones LUR y teoría del punto fijo

  • Autores: Migdalia Coromoto Rivas Mata
  • Directores de la Tesis: Eduardo Antonio Nieto Arco (dir. tes.)
  • Lectura: En la Universidad de Granada ( España ) en 2003
  • Idioma: español
  • Tribunal Calificador de la Tesis: Juan Francisco Mena Jurado (presid.), Armando Reyes Villena Muñoz (secret.), Manuel Domingo Contreras Márquez (voc.), Manuel Ruiz Galán (voc.), Juan Carlos Navarro Pascual (voc.)
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Dentro del campo del Análisis Funcional y más concretamente en el ámbito de la Geometría de los espacios de Banach, ha alcanzado especial relevancia el estudio de aquellos espacios de Banach que son M-ideal de su bidual y sus propiedades isomórficas, tales como la propiedad asintótica normante y propiedades relativas a la convexidad y suavidad de un espacio. Así, mismo, la teoría del punto fijo ha sido objeto de un importante y exhaustivo estudio en las últimas décadas.

      Esta tesis consiste, básicamente, en relacionar, por un lado la M-estructura de un espacio de Banach con propiedades que involucren la convexidad (LUR, Kadec-Klee) y la suavidad (F-diferenciabilidad, G-diferenciabilidad) de un tal espacio. Se consiguen en este contexto unas condiciones más débiles que el concepto de M-ideal para poder renormar un espacio y su dual de manera localmente uniformemente convexa. Así mismo, se presentan resultados originales que permiten a un espacio que verifica un cierto tipo de M-estructura renormarlo de tal forma que siga conservando también un grado de M-estructura y además verifique la propiedad asintótica normante.

      Por otro lado, se presentan estructuras en la línea de los M-ideales que sean suficientes para obtener la estructura normal de un espacio y su dual topológico.

      En este sentido, se consiguen resultados novedosos que permiten a un espacio con un tipo particular de M-estructura (propiedad LKK*) verificar condiciones incluso más fuertes que la estructura normal (respecto a las topologías débil y débil-*) tanto en el propio espacio como en su dual. Finalmente, se exhiben importantes técnicas, aunque de fácil estudio, para obtener el tipo de M-estructura citada anteriormente.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno