Ayuda
Ir al contenido

Dialnet


High-order hybridizable discontinuous Galerkin method for viscous compressible flows

  • Autores: Mostafa Javadzadeh Moghtader
  • Directores de la Tesis: Sonia Fernández Méndez (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2016
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Sarrate Ramos (presid.), Francisco Javier Roca Navarro (secret.), Martin Kronbichler (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Dinámica de Fluidos Computacional (CFD) es una herramienta esencial para el diseño y análisis en ingeniería, especialmente en aplicaciones de ingeniería aeroespacial, automoción o energía, entre otros. Hoy en día, la mayoría de los códigos comerciales se basan en el método de Volúmenes Finitos (FV), con precisión de segundo orden. Sin embargo, la simulación del flujo compresible y viscoso alrededor de geometrías complejas mediante estos métodos es todavía muy cara, debido al gran número de elementos de orden bajo requeridos. Algunos fenómenos físicos sofisticados, por ejemplo en aeroacústica, presentan vórtices y turbulencias, y necesitan métodos de muy alta resolución para obtener resultados precisos. Los métodos de alto orden, con bajos errores de discretización espacial, pueden superar las deficiencias de los actuales códigos de CFD. Los métodos Galerkin discontinuos (DG) han surgido como un enfoque exitoso para problemas hiperbólicos no lineales, y son ampliamente considerados muy prometedores para la próxima generación de códigos de CFD. Su eficiencia de alto orden los hace adecuados para modelos físicos avanzados como DES (Direct Numerial Simulation) y LES (Large Eddy Simulation), mientras que su estabilidad en problemas de convención dominante es también un mérito de ellos. La compacidad de los métodos DG facilita la paralelización, y su naturaleza discontinua es también útil para la adaptabilidad.

      Esta tesis doctoral se centra en el desarrollo de un método de alto orden, eficiente y robusto, basado en el método de elementos finitos Hybridizable Discontinuous Galerkin (HDG), para cálculos de flujo viscoso y compresible. HDG es un método novedoso, con los méritos de los métodos DG, pero con significativamente menos grados de libertad a nivel global en comparación con otros métodos discontinuos. Sus características hacen de HDG un candidato prometedor a ser investigado como una herramienta de alto orden de próxima generación para aplicaciones de CFD.

      La primera parte de esta tesis, recuerda los fundamentos del método HDG. Se presenta la aplicación del método para la ecuación de convección-difusión lineal en dos dimensiones, y se investiga su precisión y sus características. Posteriormente, el método se utiliza para resolver problemas de flujo viscoso compresible modelados por las ecuaciones de Navier-Stokes compresibles no lineales. Por último, se propone una nueva formulación HDG linealizada de alto orden y se implementa para este tipo de problemas. También se estudia su precisión y su eficiencia para problemas estacionarios y transitorios.

      La segunda parte es el núcleo de esta tesis. Se propone un nuevo método de captura de choque para la solución HDG de problemas de compresibles y viscosos, en presencia de choques o frentes verticales pronunciados. La idea principal es utilizar la estabilización que proporcionan los flujos numéricos, considerando un espacio discontinuo de aproximación en interior de los elementos, para disminuir o eliminar las oscilaciones en la proximidad de la discontinuidad o el frente. Las funciones de base nodales discontinuas, requieren una forma débil modificada del problema local de HDG en los elementos estabilizados. En primer lugar, el método se aplica a problemas de convección-difusión, con flujos numéricos de Bassi-Rebay y de LDG (Local Discontinuous Galerkin) dentro de los elementos. A continuación, la estrategia se extiende a las ecuaciones de Navier-Stokes compresibles utilizando flujos numéricos de LDG y de Lax-Friedrichs. Finalmente, varios ejemplos numéricos, tanto para convección-difusió, como para las ecuaciones de Navier-Stokes compresibles, demuestran la capacidad del método propuesto para capturar los choques o frentes verticales en la solución. Su excelente rendimiento, elimina o atenúa significativamente las oscilaciones alrededor de los choques, obteniendo una solución estable.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno