Ayuda
Ir al contenido

Dialnet


Robotic Embodiment Developing a System for and Applications with Full Body Ownership of a Humanoid Robot

  • Autores: Sameer Kishore
  • Directores de la Tesis: Melvyn Slater (dir. tes.), José Gutiérrez Maldonado (tut. tes.)
  • Lectura: En la Universitat de Barcelona ( España ) en 2016
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Angelika Peer (presid.), Marta Ferrer García (secret.), Bruno Herbelin (voc.)
  • Programa de doctorado: Programa Oficial de Doctorado en Psicología Clínica y de la Salud
  • Materias:
  • Enlaces
  • Resumen
    • It has been shown that with appropriate multisensory stimulation an illusion of owning an artificial object as part of their own body can be induced in people. Such body ownership illusions have been shown to occur with artificial limbs, such as rubber hands, and even entire artificial or virtual bodies. Although extensive research has been carried out regarding full body ownership illusions with mannequins and virtual bodies, few studies exist that apply this concept to humanoid robots. On the other hand, extensive research has been carried out with robots in terms of telepresence and remote manipulation of the robot, known as teleoperation. Combining these concepts would give rise to a highly immersive, embodied experience in a humanoid robot located at a remote physical location, which holds great potential in terms of real-world applications. In this thesis, we aim to apply this phenomenon of full body ownership illusions in the context of humanoid robots, and to develop real-world applications where this technology could be beneficial. More specifically, by relying on knowledge gained from previous studies regarding body ownership illusions, we investigated whether it is possible to elicit this illusion with a humanoid robot. In addition, we developed a system in the context of telepresence robots, where the participant is embodied in a humanoid robot that is present in a different physical location, and can use this robotic body to interact with the remote environment. To test the functionality of the system and to gain an understanding of body ownership illusions with robots, we carried out two experimental studies and one case-study of a demonstration of the system as a real-world application. In the Brain-Computer Interface versus Eye Tracker study, we used our system to investigate whether it was possible to induce a full body ownership illusion over a humanoid robot with a highly ‘robotic’ appearance. In addition, we compared two different abstract methods of control, a Steady-State Visually Evoked Potential (SSVEP) based Brain-Computer Interface and eye-tracking, in an immersive environment to drive the robot. This was done mainly as a motivation for developing a prototype of a system that could be used by disabled patients. Our results showed that a feeling of body ownership illusion and agency can be induced, even though the postures between participants and the embodied robot were incongruent (the participant was sitting, while the robot was standing). Additionally, both BCI and eye tracking were reported to be suitable methods of control, although the degree of body ownership illusion was influenced by the control method, with higher scores of ownership reported for the BCI condition. In the Tele-Immersive Journalism case study, we used the same system as above, but with the added capability of letting the participant control the robot body by moving their own body. Since in this case we provided synchronous visuomotor correlations with the robotic body we expected this to result in an even higher level of body ownership illusion. By making the robot body the source of their associated sensations we simulate a type of virtual teleportation. We applied this system successfully to the context of journalism, where a journalist could be embodied in a humanoid robot located in a remote destination and carry out interviews through their robotic body. We provide a case-study where the system was used by several journalists to report news about the system itself as well as for reporting other stories. In the Multi-Destination Beaming study, we extended the functionality of the system to include three destinations. The aim of the study was to investigate whether participants could cope with being in three places at same time, and embodied in three different surrogate bodies. We had two physical destinations with one robot in each, and a third virtual destination where the participant would be embodied in a virtual body. The results indicate that the system was physically and psychologically comfortable, and was rated highly by participants in terms of usability in real world. Additionally, high feelings of body ownership illusion and agency were reported, which were not influenced by the robot type. This provides us with clues regarding body ownership illusion with humanoid robots of different dimensions, along with insight about self-localisation and multilocation. Overall, our results show that it is possible to elicit a full body ownership illusion over humanoid robotic bodies. The studies presented here advance the current theoretical framework of body representation, agency and self-perception by providing information about various factors that may affect the illusion of body ownership, such as a highly robotic appearance of the artificial body, having indirect methods of control, or even being simultaneously embodied in three different bodies. Additionally, the setup described can also be used to great effect for highly immersive remote robotic embodiment applications, such as one demonstrated here in the field of journalism.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno