Ir al contenido

Dialnet


Coprocessor integration for real-time event processing in particle physics detectors

  • Autores: Alexey Pavlovich Badalov
  • Directores de la Tesis: Xavier Vilasís-Cardona (dir. tes.), Niko Neufeld (codir. tes.)
  • Lectura: En la Universitat Ramon Llull ( España ) en 2016
  • Idioma: inglés
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Els experiments de física d’altes energies actuals disposen d’acceleradors amb més energía, sensors més precisos i formes més flexibles de recopilar les dades. Aquesta ràpida evolució requereix de més capacitat de càlcul; els processadors massivament paral·lels, com ara les targes acceleradores gràfiques, ens posen a l’abast aquesta major capacitat de càlcul a un cost sensiblement inferior a les CPUs tradicionals. L’ús d’aquest tipus de processadors requereix, però, de nous algoritmes i nous enfocaments de l’organització de les dades que són difícils d’integrar en els programaris actuals. En aquest treball s’exploren els problemes derivats de l’ús d’algoritmes paral·lels en els entorns de programari existents, orientats a CPUs, i es proposa una solució, en forma de servei, que comunica amb els diversos pipelines que processen els esdeveniments procedents de les col·lisions de partícules, recull les dades en lots i els envia als algoritmes corrent sobre els processadors massivament paral·lels. Aquest servei s’integra en Gaudí - l’entorn de software de dos dels quatre experiments principals del Gran Col·lisionador d’Hadrons. S’examina el sobrecost que el servei afegeix als algoritmes paral·lels. S’estudia un cas d´ùs del servei per fer una reconstrucció paral·lela de les traces detectades en el VELO Pixel, el subdetector encarregat de la detecció de vèrtex en l’upgrade de LHCb. Per aquest cas, s’observen les característiques del rendiment en funció de la mida dels lots de dades. Finalment, les conclusions en posen en el context dels requeriments del sistema de trigger de LHCb. La física de altas energías dispone actualmente de aceleradores con energías mayores, sensores más precisos y métodos de recopilación de datos más flexibles que nunca. Su rápido progreso necesita aún más potencia de cálculo; el hardware masivamente paralelo, como las unidades de procesamiento gráfico, nos brinda esta potencia a un coste mucho más bajo que las CPUs tradicionales. Sin embargo, para usar eficientemente este hardware necesitamos algoritmos nuevos y nuevos enfoques de organización de datos difíciles de integrarse con el software existente. En este trabajo, se investiga cómo se pueden usar estos algoritmos paralelos en las infraestructuras de software ya existentes y que están orientadas a CPUs. Se propone una solución en forma de un servicio que comunica con los diversos pipelines que procesan los eventos de las correspondientes colisiones de particulas, reúne los datos en lotes y se los entrega a los algoritmos paralelos acelerados por hardware. Este servicio se integra con Gaudí — la infraestructura del entorno de software que usan dos de los cuatro gran experimentos del Gran Colisionador de Hadrones. Se examinan los costes añadidos por el servicio en los algoritmos paralelos. Se estudia un caso de uso del servicio para ejecutar un algoritmo paralelo para el VELO Pixel (el subdetector encargado de la localización de vértices en el upgrade del experimento LHCb) y se estudian las características de rendimiento de los distintos tamaños de lotes de datos. Finalmente, las conclusiones se contextualizan dentro la perspectiva de los requerimientos para el sistema de trigger de LHCb. High-energy physics experiments today have higher energies, more accurate sensors, and more flexible means of data collection than ever before. Their rapid progress requires ever more computational power; and massively parallel hardware, such as graphics cards, holds the promise to provide this power at a much lower cost than traditional CPUs. Yet, using this hardware requires new algorithms and new approaches to organizing data that can be difficult to integrate with existing software. In this work, I explore the problem of using parallel algorithms within existing CPU-orientated frameworks and propose a compromise between the different trade-offs. The solution is a service that communicates with multiple event-processing pipelines, gathers data into batches, and submits them to hardware-accelerated parallel algorithms. I integrate this service with Gaudi — a framework underlying the software environments of two of the four major experiments at the Large Hadron Collider. I examine the overhead the service adds to parallel algorithms. I perform a case study of using the service to run a parallel track reconstruction algorithm for the LHCb experiment's prospective VELO Pixel subdetector and look at the performance characteristics of using different data batch sizes. Finally, I put the findings into perspective within the context of the LHCb trigger's requirements.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno