Ayuda
Ir al contenido

Dialnet


Tools for improving performance portability in heterogeneous environments

  • Autores: Jorge F. Fabeiro
  • Directores de la Tesis: Basilio B. Fraguela (codir. tes.), Diego Andrade (codir. tes.)
  • Lectura: En la Universidade da Coruña ( España ) en 2017
  • Idioma: inglés
  • Número de páginas: 202
  • Tribunal Calificador de la Tesis: Bruno Hubert Raffin (presid.), María J. Martín (secret.), Arturo González Escribano (voc.)
  • Programa de doctorado: Programa Oficial de Doctorado en Investigación en Tecnologías de la Información
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RUC
  • Resumen
    • español

      Actualmente la computación paralela se encuentra dominada parcialmente por los múltiples dispositivos heterogéneos disponibles. Estos dispositivos difieren entre sí en características tales como el conjunto de instrucciones que ejecutan, el número y tipo de unidades de computación que incluyen o la estructura de sus sistemas de memoria. Durante los últimos años han aparecido lenguajes, librerías y extensiones que permiten escribir una única vez la versión paralela de un código y ejecutarla en un amplio abanico de dispositivos, siendo de entre todos ellos OpenCL la solución más extendida. Sin embargo, la portabilidad funcional no implica portabilidad de rendimiento. Así, uno de los grandes problemas que sigue abierto en este campo es la automatización de la portabilidad de rendimiento, es decir, la capacidad de adaptar automáticamente un código dado para su ejecución en cualquier dispositivo y obtener un buen rendimiento. Esta tesis aborda este problema planteando tres soluciones diferentes al mismo. Las tres se basan en la aplicación de optimizaciones de código a código usadas habitualmente en dispositivos heterogéneos. Tanto el conjunto de optimizaciones a aplicar como la forma de aplicarlas dependen de varios parámetros de optimización, cuyos valores han de ser ajustados para cada dispositivo concreto. La primera solución planteada es OCLoptirnizer, un optimizador de código a código que a partir de kernels OpenCL anotados y ficheros de configuración como apoyo, obtiene versiones optimizada de dichos kernels para un dispositivo concreto. Además, cuando el kernel a optimizar es único, automatiza la generación de un código de host funcional para ese kernel. Las otras dos soluciones han sido implementadas utilizando Heterogeneous Prograrnming LibranJ (HPL), una librería C++ que permite programar sistemas heterogéneos de forma fácil y portable. La primera de estas soluciones explota las capacidades de generación de código en tiempo de ejecución de HPL para generar versiones de un producto de matrices que se adaptan automáticamente en tiempo de ejecución a las características de un dispositivo concreto. La última solución consiste en el desarrollo e incorporación a HPL de un optimizador al vuelo, de fonna que se puedan obtener en tiempo de ejecución versiones optimizadas de un código HPL para un dispositivo dado. Mientras las dos primeras soluciones usan procesos de búsqueda para encontrar los mejores valores para los parámetros de optimización, esta última altemativa se basa para ello en heurísticas definidas a partir de recomendaciones generales de optimización.

    • English

      Parallel computing is currently partially dominated by the availability of heterogeneous devices. These devices differ from each other in aspects such as the instruction set they execute, the number and the type of computing devices that they offer or the structure of their memory systems. In the last years, langnages, libraries and extensions have appeared to allow to write a parallel code once aud run it in a wide variety of devices, OpenCL being the most widespread solution of this kind. However, functional portability does not imply performance portability. This way, one of the probletns that is still open in this field is to achieve automatic performance portability. That is, the ability to automatically tune a given code for any device where it will be execnted so that it ill obtain a good performance. This thesis develops three different solutions to tackle this problem. The three of them are based on typical source-to-sonrce optimizations for heterogeneous devices. Both the set of optimizations to apply and the way they are applied depend on different optimization parameters, whose values have to be tuned for each specific device. The first solution is OCLoptimizer, a source-to-source optimizer that can optimize annotated OpenCL kemels with the help of configuration files that guide the optimization process. The tool optimizes kernels for a specific device, and it is also able to automate the generation of functional host codes when only a single kernel is optimized. The two remaining solutions are built on top of the Heterogeneous Programming Library (HPL), a C++ framework that provides an easy and portable way to exploit heterogeneous computing systexns. The first of these solutions uses the run-time code generation capabilities of HPL to generate a self-optimizing version of a matrix multiplication that can optimize itself at run-time for an spedfic device. The last solutíon is the development of a built-in just-in-time optirnizer for HPL, that can optirnize, at run-tirne, a HPL code for an specific device. While the first two solutions use search processes to find the best values for the optimization parameters, this Iast alternative relies on heuristics bMed on general optirnization strategies.

    • galego

      Actualmente a computación paralela atópase dominada parcialmente polos múltiples dispositivos heteroxéneos dispoñibles. Estes dispositivos difiren entre si en características tales como o conxunto de instruccións que executan, o número e tipo de unidades de computación que inclúen ou a estrutura dos seus sistemas de mem~ ría. Nos últimos anos apareceron linguaxes, bibliotecas e extensións que permiten escribir unha soa vez a versión paralela dun código e executala nun amplio abano de dispositivos, senda de entre todos eles OpenCL a solución máis extendida. Porén, a portabilidade funcional non implica portabilidade de rendemento. Deste xeito, uns dos grandes problemas que segue aberto neste campo é a automatización da portabilidade de rendemento, isto é, a capacidade de adaptar automaticamente un código dado para a súa execución en calquera dispositivo e obter un bo rendemento. Esta tese aborda este problema propondo tres solucións diferentes. As tres están baseadas na aplicación de optimizacións de código a código usadas habitualmente en disp~ sitivos heteroxéneos. Tanto o conxunto de optimizacións a aplicar como a forma de aplicalas dependen de varios parámetros de optimización para os que é preciso fixar determinados valores en función do dispositivo concreto. A primeira solución pro posta é OCLoptirnizer, un optimizador de código a código que partindo de kemels OpenCL anotados e ficheiros de configuración de apoio, obtén versións optimizadas dos devanditos kernels para un dispositivo concreto. Amais, cando o kernel a optimizaré único, tarnén automatiza a xeración dun código de host funcional para ese kernel. As outras dúas solucións foron implementadas utilizando Heterogeneous Programming Library (HPL), unha biblioteca C++ que permite programar sistemas heteroxéneos de xeito fácil e portable. A primeira destas solucións explota as capacidades de xeración de código en tempo de execución de HPL para xerar versións dun produto de matrices que se adaptan automaticamente ás características dun dispositivo concreto. A última solución consiste no deseuvolvemento e incorporación a HPL dun optimizador capaz de obter en tiempo de execución versións optimizada<; dun código HPL para un dispositivo dado. Mentres as dúas primeiras solucións usan procesos de procura para atopar os mellares valores para os parámetros de optimización, esta última alternativa baséase para iso en heurísticas definidas a partir de recomendacións xerais de optimización.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno