Ayuda
Ir al contenido

Dialnet


Hydrological modelling of urban catchments under climate change for the design of a spatial decision support system to mitigate flooding using pervious pavements meeting the principles of sustainability

  • Autores: Daniel Jato Espino
  • Directores de la Tesis: Jorge Rodríguez Hernández (dir. tes.), Susanne Charlesworth (dir. tes.)
  • Lectura: En la Universidad de Cantabria ( España ) en 2016
  • Idioma: inglés
  • Número de páginas: 270
  • Títulos paralelos:
    • Modelado hidrológico de cuencas urbanas bajo cambio climático para diseñar un sistema espacial de apoyo a la decisión que mitigue inundaciones mediante pavimentos permeables cumpliendo los principios de sostenibilidad
  • Tribunal Calificador de la Tesis: Stephen John Coupe (presid.), Elena Blanco Fernández (secret.), Ignacio Andrés Doménech (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería Civil por la Universidad de Cantabria
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: UCrea
  • Resumen
    • español

      La urbanización y el Cambio Climático (CC) son dos fenómenos que están produciendo alteraciones hidrológicas que pueden sobrepasar la capacidad de los sistemas de drenaje. Los pavimentos permeables (PPS) ofrecen una oportunidad para mitigar ambos fenómenos, ayudando a restaurar el ciclo del agua y contribuyendo a que las ciudades sean más resilientes al CC. Esta tesis abordó el diseño de una metodología tetra-modular para modelar la capacidad de drenaje de cuencas urbanas bajo eventos de precipitación extrema debido al CC, con el fin de determinar su sensibilidad a sufrir inundaciones y mejorar su respuesta a tormentas intensas mediante la implementación de PPS que cumplan los principios de sostenibilidad. La metodología se testeó con éxito en una cuenca urbana ubicada en Espoo (Finlandia), validando su aplicabilidad bajo condiciones reales. La automatización de los métodos propuestos y su extensión al modelado de calidad de aguas fueron las principales líneas de investigación identificadas para dar continuidad a esta tesis.

    • English

      Urbanisation and Climate Change (CC) are two phenomena which are transforming natural hydrological processes in catchments. Urban growth contributes to increase runoff volume and decrease the time until peak flow is reached, which involves that precipitation is discharged rapidly via conveyance systems that disregard soil moisture replenishment and groundwater recharge. The effects of CC are likely to alter the intensity of rainfall events and result in variations in peak discharge and runoff volume that might exceed the capability of drainage systems. Pervious Pavement Structures (PPS) are a type of Sustainable Drainage Systems (SuDS) that provide an opportunity to reduce the impact of both these phenomena by helping to restore the natural water cycle and contributing to make cities more resilient to changing climate. These circumstances highlight the need to have an accurate and reliable means to model the drainage capability of urban catchments under extreme precipitation events caused by CC, in order to determine their flooding susceptibility and improve their hydrological response to severe storms through the implementation of PPS meeting the principles of sustainability. This thesis consisted of the design of a four-module methodology to achieve this purpose. The first two modules concerned the optimisation of the stormwater modelling of urban catchments using Design of Experiments (DOE) so as to build a CC methodology for the projection of annual extreme rainfall events under scenarios with different concentrations of greenhouse gases. The hydrographs obtained for these scenarios were used in the third module to design a spatial site selection tool for the location prioritisation of PPS in flood-sensitive areas, in order to simulate them and evaluate their impact on the response of urban catchments. The last module developed a Multi-criteria Decision-Making (MCDM) methodology to support the selection of PPS according to their contribution to sustainable development. The methodology was successfully tested through an urban catchment located in the city of Espoo (Finland), which validated its applicability under real conditions. The use of DOE enabled the identification of the most influential parameters on the discharge in the catchment and maximised the fit to observed values, which guaranteed that the hydrographs obtained from the models built with the CC methods to predict values of extreme precipitation were supported by statistical relationships. These models were based on physical foundations and proved that CC increased the probability of flood risk more than five times with respect to a stationary approach. The inclusion of PPS at strategic sites was found to significantly reduce the amount of water produced by rainfall events of larger magnitude than the common storms used to design drainage systems. The comparative analysis of the three major PPS types according to the three pillars of sustainability revealed that Interlocking Concrete Pavers (ICP) outperformed both Porous Asphalt (PA) and Porous Concrete (PC) due to its better economic and environmental behaviour. The automation of the proposed methods and their extension to model water quality were identified as the main future lines of research to give continuity to this PhD thesis.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno