Ayuda
Ir al contenido

Dialnet


Non-invasive techniques for respiratory information extraction based on pulse photoplethysmogram and electrocardiogram

  • Autores: Jesús Lázaro Plaza
  • Directores de la Tesis: Pablo Laguna Lasaosa (dir. tes.), Eduardo Gil Herrando (dir. tes.), Raquel Bailón Luesma (dir. tes.)
  • Lectura: En la Universidad de Zaragoza ( España ) en 2015
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Ramón Farré Ventura (presid.), Esther Pueyo Paules (secret.), Guy Carrault (voc.), Lluis Blanch Torra (voc.), Vaidotas Marozas (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: Zaguán
  • Resumen
    • El objetivo principal de esta tesis es el desarrollo de métodos no invasivos para la extracción de información respiratoria a partir de dos señales biomédicas ampliamente utilizadas en la rutina clínica: el electrocardiograma (ECG) y la señal fotopletismográfica de pulso (PPG). La motivación de este estudio es la conveniencia de monitorizar información respiratoria a partir de dispositivos no invasivos que permita sustituir las técnicas actuales que podrían interferir con la respiración natural y que presentan inconvenientes en algunas aplicaciones como la prueba de esfuerzo y los estudios del sueño. Además, si estos dispositivos no invasivos son los ya utilizados en la rutina clínica, la información respiratoria extraída de ellos representa un valor añadido que permite tener una visión más completa del paciente. DESARROLLO TEÓRICO Esta tesis se divide en 6 capítulos. El Capítulo 1 introduce la problemática, motivaciones y objetivos del estudio. También introduce el origen fisiológico de las señales estudiadas ECG y PPG, y cómo y por qué tienen información autonómica y respiratoria que se puede extraer de ellas. El Capítulo 2 aborda la obtención de información respiratoria a partir del ECG. Se han propuesto varios métodos para la obtención de la respiración a partir del ECG (EDR, del inglés ¿ECG derived respiration?). Su rendimiento se suele ver muy afectado en entornos altamente no estacionarios y ruidosos como la prueba de esfuerzo. No obstante, se han propuesto algunas alternativas, como una basada en el ángulo de rotación del eje eléctrico (obtenido del ECG), que es el que mejor funciona en prueba de esfuerzo según nuestros conocimientos. Este método requiere de tres derivaciones ortogonales y es muy dependiente de cada una de ellas, i.e., el método no es aplicable o su rendimiento se reduce significativamente si hay algún problema en alguna de las derivaciones requeridas. En el Capítulo 2 se propone un método EDR nuevo basado en las pendientes del QRS y el ángulo de la onda R. El Capítulo 3 aborda a obtención de información respiratoria a partir de la señal PPG. Se propone un método nuevo para obtener la tasa respiratoria a partir de la señal PPG. Explota una modulación respiratoria en la variabilidad de anchura de pulso (PWV) relacionada con la velocidad y dispersión de la onda de pulso. El Capítulo 4 aborda la extracción de información respiratoria a partir de señales PPG registradas con smarthpones (SCPPG), mediante la adaptación de los métodos basados en la señal PPG presentados en el Capítulo 3. En el Capítulo 5 se propone un método para el diagnóstico del síndrome de apnea obstructiva del sueño (OSAS) en niños basado únicamente en la señal PPG. El OSAS es una disfunción relacionada con la respiración y el sueño que se diagnostica mediante polisomnografía (PSG). La PSG es el registro nocturno de muchas señales durante el sueño, siendo muy difícil de aplicar en entornos ambulatorios. El método que presenta esta tesis está enfocado a diagnosticar el OSAS en niños utilizando únicamente la señal PPG que permitiría considerar un diagnóstico ambulatorio con sus ventajas económicas y sociales. Finalmente, el Capítulo 6 resume las contribuciones originales y las conclusiones principales de esta tesis, y propone posibles extensiones del trabajo. CONCLUSIÓN El método presentado en el Capítulo 2 para estimar la tasa respiratoria a partir de las pendientes del complejo QRS y el ángulo de la onda R en el ECG demostró ser robusto en entornos altamente no estacionarios y ruidosos y por tanto ser aplicable durante ejercicio incluyendo entrenamiento deportivo. Además, es independiente de un conjunto específico de derivaciones y, por tanto, un problema en alguna de ellas no implica una reducción considerable del rendimiento. El método presentado en el Capítulo 3 para estimar la tasa respiratoria a partir de la PWV extraída de la señal PPG está mucho menos afectada por el tono simpático que otros métodos presentados en la literatura que suelen basarse en la amplitud y/o la tasa de pulso. Esto permite una mayor precisión que otros métodos basados en PPG. Además, se propone un método para combinar información de diferentes señales respiratorias, y se utiliza para estimar la tasa respiratoria a partir de la PWV en combinación con otros métodos basados en la señal PPG, mejorando la precisión de la estimación incluso en comparación con otros métodos en la literatura que requieren el ECG o la presión sanguínea. Los métodos propuestos en el Capítulo 4 para estimar la tasa respiratoria mediante señales SCPPG estimaron de forma precisa la tasa respiratoria en sus rangos espontáneos habituales (0.2-0.4 Hz) e incluso a tasas más altas (hasta 0.5 Hz o 0.6 Hz, dependiendo del dispositivo utilizado). El único requerimiento es que el smartphone tenga un luz tipo flash y una cámara para grabar una yema del dedo sobre ella. La popularidad de los smartphones los convierte en dispositivos de acceso y aceptación r¿apidos. Así, para la población general es potencialmente aceptable un método que funciona en smartphones, pudiendo facilitar la medida de algunas constantes vitales utilizando solo la yema del dedo. El método presentado en el Capítulo 5 para el diagnóstico del OSAS en niños a partir de la PPG obtuvo una precisión suficiente para la clínica, aunque antes de ser aplicado en dicho entorno, el método debería ser validado en una base de datos más grande.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno