Lizeth Tello, Johannio Marulanda, Peter Thomson
En los procesos de mantenimiento y rehabilitación de vías, es importante el desarrollo de procedimientos que contribuyan a la evaluación de la condición del pavimento. Los métodos de inspección de la superficie de pavimento que emplean imágenes capturan información permitiendo un análisis cuantitativo. Este documento presenta una metodología para la detección de grietas en el pavimento, mediante la aplicación de técnicas de procesamientos de imágenes y redes neuronales artificiales; está dividido en cuatro etapas: 1. Adquisición de las imágenes, 2. Procesamiento de imágenes, iii. Extracción de características y iv. Clasificación utilizando RNA. La metodología se aplicó para la detección de los deterioros: grieta longitudinal, bache y piel de cocodrilo. La clasificación se realizó mediante una red neuronal MLP con configuración (12 14 3), la cual obtuvo una exactitud de 95,56% y una precisión de 94,44%. La metodología propuesta puede ser útil para las organizaciones gubernamentales en la evaluación de la malla vial.
For road maintenance and rehabilitation, it is important to develop procedures to evaluate pavement condition. Imaging methods can be used to obtain data to analyze a pavement surface. A methodology for crack detection is presented in this paper that is based on image processing techniques and artificial neural networks. The methodology is implemented in four stages: 1. image acquisition, 2. image processing, 3. feature extraction, and 4. classification using an artificial neural network. The methodology was used to detect deterioration in the form of longitudinal cracks, potholes, and alligator cracking. The classification was performed using a multilayer perceptron (MLP) neural network within a (12 14 3) configuration, resulting in an accuracy of 95.56% and a precision of 94.44%. The proposed methodology could be used to help governmental organizations evaluate a road network.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados