Colombia
Colombia
Teniendo en cuenta la amplia difusión que ha tenido la analítica de datos en diferentes ámbitos de aplicación y considerando los escases de datasets específicos asociados a los delitos informáticos dentro de las estrategias de datos abiertos en Colombia, este artículo tiene como objetivo realizar la caracterización de los delitos informáticos del departamento de Cundinamarca, mediante el uso de técnicas de análisis exploratorio y machine learning. La presente investigación fue desarrollada mediante 4 fases metodológicas: adecuación de los datos, análisis exploratorio de los datos, aplicación de modelos de machine learning y finalmente generación de información de valor agregado. Para el desarrollo del estudio propuesto, se conformó un conjunto de datos a partir del dataset de 35000 registros publicado por la Policía Nacional en el portal de datos abiertos de Colombia, el cual aborda los delitos de alto impacto dentro del departamento de Cundinamarca y ocurridos durante el primer semestre de 2021. El dataset de delitos cibernéticos conformado cuenta con un total de 1513 registros e incluye atributos tales como: día, trimestre, municipio, zona, victima, edad y delito, de tal modo que a nivel del análisis exploratorio se aplicaron métodos de estadística descriptiva sobre los diferentes atributos, mientras que a nivel de machine learning se hizo uso de los modelos de reglas de asociación y clustering con el fin de determinar de manera respectiva la relación de los atributos con el tipo de delito, y los grupos representativos que se forman al relacionar la edad con el tipo de delito y el municipio con el tipo de delito. El estudio desarrollado permitió demostrar la utilidad y potencialidad que tienen las técnicas de analítica de datos en el campo de la ciberseguridad, de cara a apoyar la toma de decisiones por parte de las autoridades pertinentes.
Taking into account the wide diffusion that data analytics has had in different application areas and considering the scarcity of specific datasets associated with cybercrime within open data strategies in Colombia, this article aims to characterize cybercrime in the department of Cundinamarca, through the use of exploratory analysis and machine learning techniques. The present research was developed through 4 methodological phases: data adequacy, exploratory data analysis, application of machine learning models and finally generation of value-added information. For the development of the proposed study, a dataset was formed from the dataset of 35,000 records published by the National Police in the open data portal of Colombia, which addresses high-impact crimes within the department of Cundinamarca and occurred during the first half of 2021. The cybercrime dataset has a total of 1513 records and includes attributes such as: day, quarter, municipality, area, victim, age and crime, so that at the exploratory analysis level, descriptive statistics methods were applied on the different attributes, while at the machine learning level, the association rules and clustering models were applied in order to determine respectively the relationship of the attributes with the type of crime, and the representative groups formed by relating the age with the type of crime and the municipality with the type of crime. The study developed allowed to demonstrate the usefulness and potential of data analytics techniques in the field of cybersecurity, in order to support decision making by the relevant authorities.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados