Este artículo presenta el desarrollo de un sistema para la clasificación de granos de café, según la etapa de maduración, utilizando Redes Neuronales Artificiales (RNAs). Como herramienta de clasificación se utilizaron dos estructuras de RNAs, Perceptrón Multi-Capa (MLP) y el modelo de red neuronal basado en bloques (BBNN). La estructura MLP fue diseñada e implementada sobre C++ usando el algoritmo de aprendizaje con retro-propagación del error. Para aumentar la velocidad de ejecución de la RNA se implementó bajo dispositivos electrónicos utilizando su paralelismo natural. El modelo BBNN consiste en un arreglo bidimensional de bloques fundamentales y pesos enteros, dirigidos a la fácil implementación sobre dispositivos electrónicos configurables como los arreglos de compuerta programable por campo (FPGAs). La optimización de la estructura usa un algoritmo genético. Esta estructura ha sido implementada y sintetizada sobre la tarjeta Altera Flex 10K FPGAs. El porcentaje de efectividad para la estructura MLP fue 91.7% y para el modelo BBNN fue 89.5%.
This work presents the development of a system for the classification of coffee beans based on the maturity stages using Artificial Neural Network Systems (ANNs). As classification tool two RNAs\' structures were used, Multi-Layer Perceptron (MLP) and the block-based neural network model (BBNN). Multilayer perceptron structure (MLP) has been designed and implemented on C++ using the back-propagation learning algorithm. To increase the execution speed for ANN, it has been implemented on hardware using natural parallelism. The block-based neural network (BBNN) model consists of a two-dimensional array of fundamental blocks and integer weights in order to allow easier implementation with reconfigurable hardware such as field programmable gate array (FPGAs). The architecture is globally optimized using a genetic algorithm. This architecture has been implemented and synthesized on Altera Flex 10K FPGAs. The percentage of effectiveness for MLP structure was 91.7\\% and for BBNN model was 89.5\\%.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados