Ayuda
Ir al contenido

Dialnet


Topology optimization and parameter optimization hybridized by mesh smoothing for IPMSM design

    1. [1] Muroran Institute of Technology

      Muroran Institute of Technology

      Japón

  • Localización: Compel: International journal for computation and mathematics in electrical and electronic engineering, ISSN 0332-1649, Vol. 42, Nº Extra 5, 2023, págs. 1133-1147
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Purpose Topology optimization (TO) methods have shown their unique advantage in the innovative design of electric machines. However, when introducing the TO method to the rotor design of interior permanent magnet (PM) synchronous machines (IPMSMs), the layout parameters of the magnet cannot be synchronously optimized with the topology of the air barrier; the full design potential, thus, cannot be unlocked. The purpose of this paper is to develop a novel method in which the layout parameters PMs and the topology of air barriers can be optimized simultaneously for aiding the innovative design of IPMSMs.

      Design/methodology/approach This paper presents a simultaneous TO and parameter optimization (PO) method that is applicable to the innovative design of IPMSMs. In this method, the mesh deformation technique is introduced to make it possible to make a connection between the TO and PO, and the multimodal optimization problem can thereby be solved more efficiently because good topological features are inherited during iterative optimization.

      Findings The numerical results of two case studies show that the proposed method can find better Pareto fronts than the traditional TO method within comparable time-consuming. As the optimal design result, novel rotor structures with better torque profiles and higher reluctance torque are respectively found.

      Originality/value A method that can simultaneously optimize the topology and parameter variables for the design of IPMSMs is proposed. The numerical results show that the proposed method is useful and practical for the conceptual and innovative design of IPMSMs because it can automatically explore optimal rotor structures from the full design space without relying on the experience and knowledge of the engineer.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno