Let A be a finite-dimensional k-algebra over an algebraically closed field k. In this note, we study the Gorenstein homological properties of a split-by-nilpotent extension algebra. Let R be a split-by-nilpotent extension of A. We provide sufficient conditions to ensure when a Gorenstein-projective module over A induces a similar structure over R. We also study when a Gorenstein-projective R-module induces a Gorenstein-projective A-module. Moreover, we study the relationship between the Gorensteinness of A and R.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados