Ayuda
Ir al contenido

Dialnet


From hypertoric geometry to bordered Floer homology via the m = 1 amplituhedron

    1. [1] University of Southern California

      University of Southern California

      Estados Unidos

    2. [2] Australian National University

      Australian National University

      Australia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-59
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We relate the Fukaya category of the symmetric power of a genus zero surface to deformed category O of a cyclic hypertoric variety by establishing an isomorphism between algebras defined by Ozsváth–Szabó in Heegaard–Floer theory and Braden– Licata–Proudfoot–Webster in hypertoric geometry. The proof extends work of Karp– Williams on sign variation and the combinatorics of the m = 1 amplituhedron. We then use the algebras associated to cyclic arrangements to construct categorical actions of gl(1|1), and generalize our isomorphism to give a conjectural algebraic description of the Fukaya category of a complexified hyperplane complement.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno