Estados Unidos
Este trabajo evalúa los impactos de las herramientas de gestión de calidad sobre la productividad laboral de las empresas del Perú para el periodo 2014-2019 basados en técnicas de Machine Learning (ML, en inglés) causal (MLC), las cuales reducen o eliminan tres potenciales problemas: la endogeneidad de las variables de interés, la existencia de variables confusas (confounding) y el sobre ajuste (overfitting) por la introducción de un número grande de variables de control. Usando la Encuesta Nacional de Empresas (INEI-ENE 2023), la evaluación señala que las herramientas de control de calidad inciden en la productividad de las empresas formales, particularmente de las empresas grandes y medianas.
This paper evaluates the impacts of quality management tools on the labor productivity of companies in Peru for the period 2014-2019 based on causal Machine Learning (ML) techniques (MLC), which reduce or eliminate three potential problems: the endogeneity of the variables of interest, the existence of confusing variables (confounding) and overfitting due to the introduction of many control variables. Using the National Survey of Companies (INEI-ENE 2023), the evaluation indicates that quality control tools affect the productivity of formal companies, particularly large and medium-sized companies.
© 2001-2026 Fundación Dialnet · Todos los derechos reservados