Ayuda
Ir al contenido

Dialnet


Neuroinflammation and Oxidative Stress in Models of Parkinson’s Disease and Protein-Misfolding Disorders

    1. [1] Colorado State University

      Colorado State University

      Estados Unidos

    2. [2] Department of Environmental and Radiological Health Sciences 1680 Campus Delivery Fort Collins CO 80523-1680 USA
  • Localización: Oxidative stress and redox signalling in parkinson's disease / Rodrigo Franco (ed. lit.), Jonathan A. Doorn (ed. lit.), Jean-Christophe Rochet (ed. lit.), 2017, ISBN 9781782621881, págs. 184-209
  • Idioma: español
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Numerous mechanisms are implicated in the etiology of sporadic Parkinson’s disease (PD) including protein misfolding, oxidative stress and neuroinflammation, which contribute to the loss of dopaminergic neurons. Activation of glial cells exacerbates each of these mechanisms and there are currently no therapeutic agents that prevent damaging neuroinflammatory responses in microglia and astrocytes. Microglia are the resident macrophages of the CNS and can activate astrocytes, which are important for regulation of cerebral blood flow and neuronal metabolic homeostasis. Activated microglia and astrocytes strongly influence mechanisms of injury relevant to PD and are the primary sources of inflammatory and oxidative factors in the CNS. Glial cells can be activated endogenous and exogenous toxicants, as well as by misfolded proteins and other signals of neuronal stress. In animal models of PD and protein-misfolding disorders, oxidative and inflammatory mediators are produced and have been shown to induce loss of dopaminergic neurons. Delineating the molecular mechanisms that control the production of inflammatory and oxidative mediators from glial cells could provide new targets for therapeutic intervention to slow neurodegeneration relevant to PD and other disorders.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno