Ayuda
Ir al contenido

Dialnet


A sensitivity analysis and error bounds for the adaptive lasso

  • Tathagata Basu [1] ; Jochen Einbeck [1] ; Matthias C.M. Troffaes
    1. [1] Durham University

      Durham University

      Reino Unido

  • Localización: Proceedings of the 35th International Workshop on Statistical Modelling : July 20-24, 2020 Bilbao, Basque Country, Spain / Itziar Irigoyen Garbizu (ed. lit.), Dae-Jin Lee (ed. lit.), Joaquín Martínez Minaya (ed. lit.), María Xosé Rodríguez Álvarez (ed. lit.), 2020, ISBN 978-84-1319-267-3, págs. 278-281
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Sparse regression is an ecient statistical modelling technique which is of major relevance for high dimensional problems. There are several ways of achieving sparse regression, the well-known lasso being one of them. However, lasso variable selection may not be consistent in selecting the true sparse model.

      Zou (2006) proposed an adaptive form of the lasso which overcomes this issue, and showed that data driven weights on the penalty term will result in a consistent variable selection procedure. Weights can be informed by a prior execution of least squares or ridge regression. Using a power parameter on the weights, we carry out a sensitivity analysis for this parameter, and derive novel error bounds for the Adaptive lasso.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno