Ayuda
Ir al contenido

Dialnet


Resumen de Comportamiento biotribológico de prototipos de implantes de la aleación Ti6Al4V fabricados por EBM y posteriormente anodizados

Anny A. Arroyave-Berrio, Camila Zapata, Carlos A. Vargas Isaza, Adrián Tamayo, Libia M. Baena, Juan Castaño, Carlos Botero, Alejandro Alberto Zuleta Gil, Nicolás Bedoya Ochoa, Enrique Quiceno, Maryory Gómez

  • español

    Las articulaciones de la cadera pueden resultar dañadas por causas metabólicas (enfermedad degenerativa) o mecánicas (fractura), limitando su funcionalidad. Para restablecer el movimiento de la articulación, esta debe ser sustituida por una prótesis de cadera. En las articulaciones se producen fenómenos de lubricación, fricción y desgaste que, a su vez, suelen ser responsables del fallo de la prótesis, provocando su aflojamiento. Por tal motivo, el objetivo del presente estudio consistió en evaluar el comportamiento biotribológico de un prototipo de prótesis de cadera de Ti6Al4V manufacturado mediante fabricación aditiva por haz de electrones (EBM) y posteriormente modificado superficialmente mediante anodizado. Una vez obtenido el prototipo, se pulieron algunas muestras para realizar ensayos biotribológicos y otras para anodizarlas. Las pruebas biotribológicas se realizaron en un tribómetro de esfera sobre disco utilizando contracuerpos de alúmina de 6 mm de diámetro, empleando una carga de 5 N y velocidades de 30, 50 y 70 rpm. Se obtuvieron huellas de desgaste de 2 mm de diámetro, utilizando como medio un fluido corporal simulado (SBF) a una temperatura de 37 °C. El proceso EBM incrementó la dureza de la aleación Ti6Al4V respecto al proceso de forja convencional. Las muestras fabricadas por EBM, y posteriormente anodizadas, revelaron los valores más altos de coeficientes de fricción, mientras que las muestras fabricadas por forja y EBM indicaron coeficientes de fricción similares para todas las velocidades estudiadas. Adicionalmente, las muestras fabricadas por EBM, y después anodizadas, señalaron la menor tasa de desgaste, seguidas por las muestras fabricadas por EBM, mientras que las muestras fabricadas por forja evidenciaron la mayor tasa de desgaste. Igualmente, se encontró abrasión como principal mecanismo de desgaste en todas las condiciones evaluadas en las pruebas biotribológicas. Con la velocidad de 30 rpm se obtuvieron las menores tasas de desgaste para la aleación de Ti6Al4V con los diferentes procesos de fabricación; con esta misma velocidad se obtuvieron las mayores tasas de desgaste de los contracuerpos de todos los pares biotribológicos.

  • English

    Hip joints can be damaged by metabolic (degenerative disease) or mechanical (fracture) causes, limiting their functionality. To restore joint movement, the joint must be replaced by a hip prosthesis. Lubrication, friction, and wear phenomena occur in the joints, which, in turn, are often responsible for the failure of the prosthesis, causing its loosening. The aim of the present study is to evaluate the biotribological behavior of a prototype Ti6Al4V hip prosthesis fabricated by electron beam melting (EBM) additive manufacturing and subsequently surface modified by anodizing. Once the prototype was obtained, some samples were polished for biotribological tests and others for anodizing. The biotribological tests were performed in a ball-on-disk tribometer using 6 mm diameter alumina counterbodies, using a load of 5 N and speeds of 30, 50, and 70 rpm. Wear tracks of 2 mm in diameter were obtained, using a simulated body fluid (SBF) at a temperature of 37 °C as the medium. The EBM process increased hardness of the Ti6Al4V alloy with respect to the conventional forging process. The samples manufactured by EBM and subsequently anodized showed the highest values of friction coefficients, while the samples manufactured by forging and EBM showed similar friction coefficients for all the speeds studied. Additionally, EBM fabricated and subsequently anodized samples showed the lowest wear rate followed by EBM fabricated samples, while forging fabricated samples showed the highest wear rate. Abrasion was found to be the main wear mechanism in all conditions evaluated in the biotribological tests. With the speed of 30 rpm the lowest wear rates were obtained for the Ti6Al4V alloy with the different manufacturing processes, with this same speed the highest wear rates were obtained for the counterbodies of all the biotribological pairs.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus