El presente artículo científico, tiene como propósito, demostrar, la mecánica de partículas (física de partículas elementales) en un campo determinado, sea cual fuere la fuerza fundamental involucrada, bajo la teoría de campo de Yang – Mills, esto es, bajo estándares generales y uniformemente aplicables, es decir, sin perjuicio del campo de que se trate y en consecuencia, el conjunto de partículas susceptibles de interacción, para lo cual, se optimizan los sistemas de referenciación aquí desglosados (verbigracia, desde la óptica del sistema lagrangiano, etc), desde una perspectiva einsteniana, desde el ángulo de percepción de las teorías de gauge y de la estructura de campo de Higgs, así como del modelo estándar de física de partículas, etc. Asimismo, este artículo científico, procura, reforzar la propuesta de solución formulada por este investigador[1], bajo la siguiente tríada de premisas: (i) la conjetura de que las excitaciones más bajas de una teoría pura de Yang-Mills (es decir, sin campos de materia) tienen una brecha de masa finita con respecto al estado de vacío; (ii) la propiedad de confinamiento en presencia de partículas adicionales; y, (iii) que, para un campo de Yang-Mills no abeliano, existe un valor positivo mínimo de la energía.
The purpose of this scientific article is to demonstrate particle mechanics (elementary particle physics) in a given field, whatever the fundamental force involved, under the Yang-Mills field theory, that is, under general and uniformly applicable standards, that is, without prejudice to the field in question and consequently, the set of particles susceptible to interaction, for which the referential systems broken down here are optimized (e.g., from the perspective of the Lagrangian system, etc.), from an Einsteinian perspective, from the angle of perception of the theories of gauge and the Higgs field structure, as well as the standard model of particle physics, etc. Likewise, this scientific article seeks to reinforce the proposed solution formulated by this researcher, under the following triad of premises: (i) the conjecture that the lowest excitations of a pure Yang-Mills theory (i.e., without matter fields) have a finite mass gap with respect to the vacuum state; (ii) the property of confinement in the presence of additional particles; and, (iii) that, for a non-abelian Yang-Mills field, there is a minimum positive value of energy.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados