Ayuda
Ir al contenido

Dialnet


Synchronization in Retrospective Respiratory Gating using Deep Learning

    1. [1] Universidad Carlos III de Madrid

      Universidad Carlos III de Madrid

      Madrid, España

  • Localización: CASEIB 2023. Libro de Actas del XLI Congreso Anual de la Sociedad Española de Ingeniería Biomédica: Contribuyendo a la salud basada en valor / coord. por Joaquín Roca González, Dolores Ojados González, Juan Suardíaz Muro, 2023, ISBN 978-84-17853-76-1, págs. 294-297
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Breathing motion introduces artifacts during CT acquisition, what affect the quality and subsequent reconstruction of the images. This study aims to reduce artefact in CT images using deep learning techniques. Specifically, we propose the implementation of an autoencoder based on convolutional neural networks. Once the model was trained, we employed a morphing technique to generate new images with reduced respiratory motion. By analyzing the respiratory signal, we classified the different images into phases and selected those most suitable for correction. Subsequently, we applied the de- scribed method, obtaining a more homogeneous data set. The results demonstrate a significant reduction in motion when comparing intensity changes within the regions most affected by motion. Thus, we validated the efficacy of the proposed approach to mitigate breathing-induced artifacts. The appli- cation of artificial intelligence (AI) in this field represents a significant advance. This ...


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno