Ayuda
Ir al contenido

Dialnet


Comparative insights into hydrogen abstraction of CCl3H by small oxygen-containing anions MO− with M= BE, B, and AL

  • Autores: Liang Junxi, Zhang Fupeng, Duan Yu, Bai Jun, Su Qiong, Li Zhenhua, Zhang Lili
  • Localización: Journal of the Chilean Chemical Society (Boletín de la Sociedad Chilena de Química), ISSN-e 0717-6309, ISSN 0366-1644, Vol. 66, Nº. 3, 2021, págs. 5273-5279
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In the present work, the considered hydrogen abstraction (HAT) reactions of CCl3H molecule driven by three different small anions MO− (M = Be, B, and Al) have been investigated using electronic structure calculations. While full geometry optimizations were operated to locate all of the relevant stationary points using the DFT-BHandHLYP/aug-cc-pVTZ level, the potential-energy profiles were constructed using the coupled-cluster theory with extrapolation to complete basis set CCSD(T)/CBS. Our theoretical findings suggest that the most favored pathway determined for the HAT reactions mainly stems from the MO− type, namely, for facilitating the HAT pathway the B atom is predicted to be an inherent key in the BO−-reaction whereas it becomes O atom in both BeO−- and AlO−-reactions. Of the three favored pathways obtained here, the activations of the CCl3H in the presence of both BeO− and AlO− anions are significantly efficient, in which the energy barrier for the cleavage of the C-H bond with the assistance of BeO− was to be relatively low. Again, through the transition state theory the rate constants at 298-1000 K are also evaluated for the most favored HAT reactions studied here, indicating the lower the temperature, the faster the BO− chemical reaction.

Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno