Jhonatan Collazos Ramirez, Pablo Emilio Jojoa, Juan Pablo Hoyos-Sánchez
En áreas como el procesamiento de imágenes biomédicas las técnicas o métodos para recuperar el contenido en señales que están contaminadas con ruido son indispensables. Una de ellas ha sido el filtrado adaptativo que, al ajustarse a la señal deseada a través de la actualización en tiempo real de los coeficientes permite el mejoramiento y la deconvolución en la recuperación de imágenes degradadas o contaminadas, logrando atraer la atención de investigadores en problemas inversos. En este artículo el algoritmo del gradiente 2D-AR? es utilizado en la reducción de ruido en imágenes radiológicas dentales, para lo cual se realizan simulaciones para obtener la mejor configuración de los hiperparámetros y se realiza un análisis estadístico de los valores obtenidos. Con base en los resultados de la simulación y las métricas establecidas, se demuestra que el algoritmo logra una reducción del ruido estadísticamente superior que los otros algoritmos del gradiente 2D (LMS y NLMS).
In areas such as biomedical image processing, the techniques or methods used to recover the content in noise-contaminated signals are essential. One of them has been adaptive filtering, which, by adjusting to the desired signal through real-time updating of the coefficients, allows improvement and deconvolution in the recovery of degraded or contaminated images, attracting the attention of researchers in inverse problems. In this paper, the 2D-AR? gradient algorithm is used in noise reduction in dental radiological images, for which simulations are performed to obtain the best configuration of the hyperparameters, and a statistical analysis of the values obtained is performed. Based on the simulation results and the established metrics, it is demonstrated that the algorithm achieves a slightly higher noise reduction than the other 2D gradient algorithms (LMS and NLMS).
© 2001-2024 Fundación Dialnet · Todos los derechos reservados