Nada Bouazila, Hamza Guebbai, Wassim Merchela
En este artículo, construimos una sucesión similar a la de Newton para acercarnos al cero de una función diferenciable en el sentido Fréchet no lineal definida en un espacio de Hilbert. Esta nueva sucesión utiliza el concepto del adjunto del operador, que hace que el proceso iterativo sea más manejable en la práctica en comparación al desarrollado por Kantorovich que requiere el cálculo del operador inverso en cada iteración. Dado que el cálculo del operador adjunto es más fácil en comparación con el cálculo del operador inverso que en la práctica equivale a resolver un sistema de ecuaciones, nuestra nuevo método hace que el cálculo del término de nuestra nueva sucesión sea más fácil y conveniente para la aproximación numérica. Proporcionamos un teorema de convergencia a priori de esta sucesión, donde usamos unas hipótesis equivalentes a las construidas por Kantorovich, y mostramos que nuestra nueva sucesión iterativa converge hacia la solución.
In this paper, we build a Newton-like sequence to approach the zero of a nonlinear Fréchet differentiable function defined in Hilbert space. This new iterative sequence uses the concept of the adjoint operator, which makes it more manageable in practice compared to the one developed by Kantorovich which requires the calculation of the inverse operator in each iteration. Because the calculation of the adjoint operator is easier compared to the calculation of the inverse operator which requires in practice solving a system of linear equations, our new method makes the calculation of the term of our new sequence easier and more convenient for numerical approximations. We provide an a priori convergence theorem of this sequence, where we use hypotheses equivalent to those constructed by Kantorovich, and we show that our new iterative sequence converges towards the solution.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados