Ayuda
Ir al contenido

Dialnet


Resumen de VARVO: a Novel Method for the Fast Detection of Vehicle Crash Events from Video Only Data

Mario Moreno Pallares, Sang-Bum Yoo, Wilbert Geovanny Aguilar Castillo

  • español

    Alrededor de 1,35 millones de personas a nivel mundial mueren anualmente por incidentes de tráfico y se estima que 50 millones sufren lesiones graves. Este panorama es particularmente dramático en la Región Andina donde el número de muertes por accidentes de tránsito asciende a 127 muertes por millón de habitantes. Recientemente, el despliegue de Sistemas Inteligentes de Transporte (SITs) en países desarrollados ha ayudado a reducir la mortalidad por accidentes de tránsito. Una parte integral de un SIT es la detección automática de incidentes de tráfico a partir de datos de video y sensores. Sin embargo, la escasez de conjuntos de datos, especialmente de casos positivos de incidentes de tráfico, obstaculizan el desarrollo de aplicaciones de inteligencia artificial para el dominio de la investigación del tráfico. En este contexto, presentamos la siguiente pregunta de investigación: ¿Es posible detectar colisiones de automóviles mediante aprendizaje automático supervisado, basado en la velocidad estimada de los autos a partir de datos de video? Como resultado presentamos VARVO, un algoritmo para la detección de incidentes de tráfico que no depende de sensores para la detección de la velocidad de los automóviles, el cual realiza una clasificación supervisada usando la detección de objetos basada en red convolucional y seguimiento bidireccional. También se describe cómo los modelos implementados en VARVO pueden mejorar su precisión de clasificación aplicando un algoritmo de sobremuestreo para clases desequilibradas. Creemos que el despliegue de VARVO podría vincularse a cámaras de video estáticas de tráfico y ser parte de los SITs en la Región Andina.

  • English

    Around 1,35 million people worldwide die each year because of traffic incidents, and it is estimated that another 50 million suffers serious injuries. This picture is particularly dramatic in the Andean Region where the death toll due to traffic accidents is as high as 127 deaths per million inhabitants. In recent years the deployment of the so-called Intelligent Transport Systems (ITS) across several developed countries has helped to reduce the number of deaths due to traffic accidents. An integral part of an ITS is the automatic detection of traffic incidents from video and sensor data. However, the scarcity of curated datasets, especially those that contained a reasonable number of positive instances of traffic incidents is hampering the development of artificial intelligence applications for the domain of traffic research. Given this scenario, we pursued answering the following research question: is it possible to detect car crashes through supervised machine learning based on the estimated speeds of cars from video only-data? Here we present VARVO, a novel algorithm for the detection of traffic incidents that does not rely on sensors for cars speed detection. VARVO performs a supervised classification task based on the sequential use of convolutional network-based object detection and bi-directional tracking. We also describe how the models implemented in VARVO improved their classification accuracy by applying an oversampling algorithm to deal with class imbalance. We believe that the deployment of VARVO could be linked to static traffic video cameras and could be part of the Intelligent Transport Systems foundations in other Andean countries.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus