Huiling Ma, Longbing Yang, Zhuqing Tian, Lijuan Zhu, Jian Peng, Ping Fu, JiangFan Xiu, Guo Guo
There is a need for new anti–Candida albicans (C. albicans) drugs owing to the emergence of drug resistance in recent years. AMP-17, an antimicrobial peptide from Musca domestica (M. domestica), is known to be an effective inhibitor of many fungal pathogens, including C. albicans. In this study, we investigated the potential mechanism underlying the anti–C. albicans effects of AMP-17 using flow cytometry, transmission electron microscopy, fluorescent probes, fluorescence microplate reader, and confocal laser microscopy. Transmission electron microscopy showed that, following AMP-17 treatment, the shape of C. albicans cells became irregular, and vacuoles could be seen in the cytoplasm. Furthermore, AMP-17 treatment resulted in an increase in reactive oxygen species (ROS) levels, depolarization of the mitochondrial membrane potential (MMP), and changes in the cell cycle, leading to the apoptosis and necrosis, which ultimately contributed to the death of C. albicans cells.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados