Ayuda
Ir al contenido

Dialnet


Algoritmos evolutivos guiados por redes complejas libres de escala

    1. [1] Universidad del Valle (Colombia)

      Universidad del Valle (Colombia)

      Colombia

  • Localización: Revista Científica, ISSN 0124-2253, ISSN-e 2344-8350, Vol. 44, Nº. 2, 2022 (Ejemplar dedicado a: May-August 2022), págs. 228-241
  • Idioma: español
  • Títulos paralelos:
    • Evolutionary Algorithms Guided by Scale-Free Complex Networks
  • Enlaces
  • Resumen
    • español

      Los algoritmos de computación evolutiva permiten solucionar problemas de optimización a partir de iteraciones y etapas definidas. Una de las técnicas más utilizadas para este tipo de problemas es la evolución diferencial, que contiene propiedades de redes complejas de pequeño mundo, cuyo estudio es importante por los resultados que generan a los problemas de optimización. Teniendo en cuenta los resultados obtenidos en trabajos previos, en los que se propone un algoritmo evolutivo guiado por redes complejas de pequeño mundo, se define una propuesta que incluye redes complejas libres de escala, con el fin de validar los promedios generados por las redes complejas frente a los resultados presentados por el algoritmo evolutivo tradicional. Se definió un experimento que permite evaluar el desempeño del modelo propuesto y el del algoritmo evolutivo a través de indicadores estadísticos. También se utilizaron cuatro problemas de optimización (Ackley, Beale, Camel y Sphere) para evaluar la hipótesis en el modelo propuesto, su convergencia y la disminución de tiempos de ejecución frente al modelo base. Se observó que las redes complejas libres de escala generan mejores promedios que el algoritmo evolutivo tradicional y las redes complejas de pequeño mundo porque utilizan un mecanismo de conexión preferencial entre sus nodos y guían la combinación de individuos (soluciones), mejorando la tasa de convergencia y el rendimiento del algoritmo evolutivo en general.

    • English

      Evolutionary computation algorithms allow solving optimization problems through defined iterations and stages. One of the most commonly employed techniques for this type of problem is differential evolution, which contains properties of small-world complex networks, whose study is important because of the results they generate for optimization problems. Considering the results obtained in previous works, which propose an evolutionary algorithm guided by complex small-world networks, a proposal is defined which contains complex scale-free networks, with the purpose of validating the averages generated by complex networks against the results obtained by the traditional evolutionary algorithm. An experiment was defined which allows evaluating the performance of the proposed model and that of the evolutionary algorithm by means of statistic indicators. Four optimization problems (Ackley, Beale, Camel, and Sphere) were also used to evaluate the hypothesis in the proposed model, its convergence, and the reduction of execution times compared to the base model. It was observed that the scale-free complex networks generated better averages than the traditional evolutionary algorithm and the small-world networks because they use a connection preferential mechanism between their nodes and guide the combination of individuals (solutions), thus improving the convergence rate and the performance of the evolutionary algorithm in general.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno