Ayuda
Ir al contenido

Dialnet


Resumen de Smooth quotients of abelian surfaces by finite groups that fix the origin

Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quesada Barriuso

  • español

    RESUMEN Sea A una superficie abeliana y sea G un grupo finito de automorfismos de A fijando el origen. Se asume que la representación analítica de G es irreducible. Damos una clasificación de los pares (A,G) tales que el cociente A/G es suave. En particular, probamos que A = E2 con E una curva elíptica y que A/G ≃ ℙ2 en todos los casos. Más aún, para E fija, hay solo una cantidad finita de pares (E2,G), salvo isomorfismo. Esto llena una pequeña brecha en la literatura y completa la clasificación de cocientes suaves de variedades abelianas por grupos finitos fijando el origen comenzado por los dos primeros autores.

  • English

    ABSTRACT Let A be an abelian surface and let G be a finite group of automorphisms of A fixing the origin. Assume that the analytic representation of G is irreducible. We give a classification of the pairs (A,G) such that the quotient A/G is smooth. In particular, we prove that A = E2 with E anelliptic curve and that A/G ≃ ℙ2 in all cases. Moreover, for fixed E, there are only finitely many pairs (E2,G) up to isomorphism. This fills a small gap in the literature and completes the classification of smooth quotients of abelian varieties by finite groups fixing the origin started by the first two authors.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus